
  
  

EXPLODING DOTS 
CHAPTER 8 
 

DECIMALS 
 
All our machines, so far, have had boxes going to the left as far as we please. But that seems awfully 
lopsided! Why can’t we have boxes going infinitely far to the right as well?  
 
Mathematicians like symmetry and so let’s follow suit and now make all our machines symmetrical. Let’s 
have boxes going to the left and to the right.  
 
But the challenge now is to figure out what those boxes to the right mean. 
 
DISCOVERING DECIMALS 
 

Let’s go back to working with a 1 10  machine and see what boxes to the right could mean in that 
machine. (Then it should become clear what they mean in other machines as well.)   
 
To keep the left and right boxes visibly distinct, we’ll separate them with a point. (Society calls this point, 

for a 1 10  machine at least, a decimal point.)  
 

 
 
So, what does it mean to have dots in the right boxes? What are the values of dots in those boxes? 
 

Since this is a 1 10  machine, we do know that ten dots in any one box explode to make one dot one 
place to the left. So ten dots in the box just to the right of the decimal point are equivalent to one dot in 

the 1s box.  Each dot in that box must be worth one-tenth. 
 

 
We have our first place value to the right of the decimal point.  
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In the same way, ten dots in the next box over are worth one-tenth. And so each dot in that next box 
must be worth one-hundredth. 
 
 

 
We now have two place values to the right of the decimal point.  
 

 
And ten one-thousandths make a hundredth, and ten ten-thousandths make a thousandth, and so on. 
 

 
 
We see that the boxes to the left of the decimal point represent place values as given by the powers of 
ten, and the boxes to the right of the decimal point represent place values given by the reciprocals of 
the powers of ten. 
 
We have just discovered decimals! 
 

Question: What does the prefix deci mean in English? Would we talk about “decimals” in a 1 2  
machine, for instance? (And why isn’t December the tenth month of the year? What happened in the 
history of the western calendar?) 
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When people write 0.3 , for example, in base ten, they mean the value of placing three dots in the first 
box after the decimal point.  
 

 
 

We see that 0.3   equals three tenths: 
3

0.3
10

 . 

 

Seven dots in the third box after the decimal point is seven thousandths: 
7

0.007
1000

 . 

 
 
 

 
 

Comment: Some people might leave off the beginning zero and just write 
7

.007
1000

 . It’s just a 

matter of personal taste. 
 
 
Here’s a question. I’ve included my answer to it, and the answers to all the other questions I sprinkle 
throughout this chapter, at the end of this lesson. 
 
 

1.  Some people read 0.6  out loud as “point six” and others read it out loud as “six tenths.” Which 
is more helpful for understanding what the number really is? 

 
 

There is a possible source of confusion with a decimal such as 0.31 . This is technically three tenths and 

one hundredth: 
3 1

0.31
10 100

  .  
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But some people read 0.31  out loud as “thirty-one hundredths,” which looks like this. 
 

 
Are these the same thing?  
 
Well, yes! With three explosions we see that thirty-one hundredths becomes three tenths and one 
hundredth.  
 

Comment: You can also show that 
3 1

10 100
  and 

31

100
 are the same with the arithmetic of adding 

fractions. We have 
3 1 30 1 31

10 100 100 100 100
    .  (Do you see that this is really the result of 

performing three unexplosions in a picture of 
3 1

10 100
 ?)  

 
 

2.  A teacher asked his students to each draw a 1 10  machine picture of the fraction 
319

1000
. 

JinJin drew: 

 
Subra drew: 
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The teacher marked both students as correct. Are each of these solutions indeed valid? Explain 
your thinking. (By the way, the teacher doesn’t mind if students just write numbers instead of 
drawing dots.) 

 
 
 

3. Multiple choice! 

a) The decimal 0.23  equals: (A) 
23

10
    (B) 

23

100
    (C) 

23

1000
   (D) 

23

10000
? 

b) The decimal 0.0409  equals: (A) 
409

100
   (B) 

409

1000
   (C) 

409

10000
   (D) 

409

100000
? 

 
 
SIMPLE FRACTIONS AS DECIMALS 
 
Some decimals give fractions that simplify further. For example, 
 

 
5 1

0.5
10 2

    

 
and 

 
4 1

0.04
100 25

  . 

 
Conversely, if a fraction can be rewritten to have a denominator that is a power of ten, then we can 
easily write it as a decimal. For example,  
 

 
3 6

5 10
  and so 

3
0.6

5
   

 
and   

 
13 13 5 65

0.65
20 20 5 100


  


. 

 
 
Here are some more problems. Do whichever ones seem interesting to you. 
 
 

4. What fractions (in simplest terms) do the following decimals represent? 
 

               0.05           0.2                0.8                 0.004   
 
 

5. Write each of the following fractions as a decimal. 
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2 1 1 1 2

5 25 20 200 2500  
 

  
6. MULTIPLE CHOICE! 

a) The decimal 0.050  equals (A) 
50

100
   (B) 

1

20
    (C) 

1

200
   (D) None of these? 

b) The decimal 0.000208  equals (A) 
52

250
   (B) 

52

2500
   (C) 

52

25000
   (D) 

52

250000
?  

 
 
 

7. Write each of the following fractions as decimals. 
 

7 16 301 17 3

20 25 500 50 4
 

 
 

8. CHALLENGE 

a) What fraction does the decimal 2.3  represent?  

b) What fraction does 17.04  represent? 

c) What fraction does 1003.1003  represent? 
 
 
 

9. Let’s explore the question: Do 0.19   and 0.190   represent the same number or different 
numbers? 

 
Here are two dots and boxes pictures for the decimal 0.19: 

 

 
Here are two dots and boxes picture for the decimal 0.190 
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a) Explain how one “unexplosion” establishes that the first picture of 0.19  is equivalent to the 

second picture of 0.19 . 

b) Explain how several unexplosions establishes that the first picture of 0.190 is equivalent to the 

second picture of 0.190 . 
c) Explain how explosions and unexplosions in fact establish that all four pictures are equivalent to 

each other. 

d) In conclusion then: Does 0.190 represent the same number as 0.19 ? 
 
 

To a mathematician, the expressions 0.19  and 0.190  represent exactly the same numeric quantity. 
But you may have noticed in science class that scientists will often write down what seems likes 
unnecessary zeros when recording measurements. This is because scientists want to impart more 
information to the reader than just a numeric value.  
 

For example, suppose a botanist measures the length of a stalk. By writing the measurement as 0.190
meters in her paper, the scientist is saying to the reader that she measured the length of the stalk to the 

nearest one thousandth of a meter and that she got 1  tenth, 9  hundredths, and 0  thousandths of a 

meter. Thus we are being told that the true length of the stalk is somewhere in the range of 0.1895  and 

0.1905  meters.   
 

If she wrote in her paper, instead, just 0.19  meters, then we would have to assume she measured the 
length of the stalk only to the nearest tenth of a meter and so its true length lies somewhere between 

0.185  and 0.195  meters.   
 
 
MIXED NUMBERS AS DECIMALS 
 

How does 
3

12
4

, for example, appear as a decimal? 

 

Well, 
3 3

12 12
4 4
   and we can certainly write the fractional part as a decimal. (The non-fractional part 

is already in the 1 10  machine format!) We have 
 

3 75
12 12

4 100
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and so we see  
 

    
3

12 12.75
4
 . 

 
 

10. Write each of the following numbers in decimal notation. 
 

3 1 1 3 78 9 131
5 7 13 106

10 5 2 20 25 4 40
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ADDING AND SUBTRACTING DECIMALS 
 

Performing addition and subtraction with decimals in a 1 10  machine is no different from performing 

addition and subtraction in a 1 10  machine without decimals.  
 

For example, here is a picture of 22.37 5.841 .  

 

 
 

We see the answer 2 | 7 . 11 |11 |1 . Just add left to right and don’t worry about explosions! 

 

 
 

With explosions we obtain an answer that society understand. We get 28.211 . (Check this!) 
 

And here is 10.23 4.57 . 
 

 
 

We see the answer, after some annihilations, as  1| 4 . 3 | 4    . (Do you see this?) 
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Now with some unexplosions, we can fix up this answer for society to read. We get10.23 4.57 5.66  . 
(Check that you follow this.)  
 

 
 
 
Here are some practice questions you might, or might now, want to do. 
 

11. What is 0.05 0.006 ?  

What is 0.05 0.006 ?  
Can you see the answer with dots-and-boxes?   

 
12. Agatha says that computing 0.0348 0.0057  is essentially the same work as computing 

348 57  in whole numbers. Do you agree? 
 

Percy says that computing 0.0852 0.037  is essentially the same work as computing 852 37  
in whole numbers. Do you agree? 
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MULTIPLYING AND DIVIDING DECIMALS 
 

Even though the addition and subtraction of decimals is straightforward in a 1 10  machine, 

performing multiplication and division on them can be awkward. The trouble is that the 1 10  
machine is based on whole dots, not parts of dots, and so it is tricky to make easy sense of pictures.  But 
there are ways to play with dots-and-boxes nonetheless. 
 
MULTIPLICATION 
 
We can certainly do some basic multiplication. For example, a picture of dots and boxes shows that  
 

 2.615 7   
 

equals 14. 42 | 7 | 35 .  

 

 
 

With explosions, this becomes 18.305 . (Check this!)    
 
 
We can also explain a rule that students are taught to memorize:  
 

If you multiply a decimal by 10 , just shift the decimal point one place to the right. 
 

For example,31.42 10  gives the answer 30 |10 . 40 | 20 . With explosions, this becomes 314.20  and 

the answer looks as though we just shifted the decimal point. (Most people leave off the final zero.)  
 

 
 

By the way, if you multiply a number a little larger than 31 by ten, you should get an answer a little 
larger than 310 . Memorizing the direction of travel of a decimal point is unnecessary. 
 
  

13. Explain why multiplying a decimal by 100  has the same effect as shifting the decimal point two 
places? (Do you need to memorize the direction of the shift?) 

 
 
We can also multiply decimals by decimals, but now the work is getting less fun. We need to follow the 
same approach as we did when we explored long multiplication in chapter 3.  



12 

 

 

Let’s do an example. Consider 2.15 0.3 . 
 

Here’s what 2.15  looks like.  
 

 
 

Here’s what 0.3  looks like: it’s three dots to the right of where one dot should be. 
 

 
 

So to compute 2.15 0.3  we need to replace each dot that appears in the picture of 2.15  with three 
dots to the right of where that dot should be. Doing so gives this picture. 
 

 
 

We see the answer 0.6 | 3 |15 , or 0.645  after an explosion. 

 
So multiplication with decimals is doable, but awkward. It is actually easier, in practice, to go back to 
basic arithmetic and work with decimals as fractions. For example, 
 

 
2 4 8

0.2 0.4 0.08
10 10 100

       

and 

 
5 6 30 3

0.05 0.006 0.0003
100 1000 100000 10000

        

and 

 
15 3 6 45

2.15 0.3 2 0.6 0.045 0.645
100 10 10 1000

 
         

 
. 

 
We also see the effect of multiplying a decimal by ten this way. For example 
 

 
1 4 2 4 2

10 3.142 10 3 30 1 31.42
10 100 1000 10 100

 
           

 
. 

 

14. Compute 0.04 0.5  and compute 1000 0.0385 .  
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DIVISION 
 

Consider 0.08 0.005 .  
 

To do this problem I could try drawing a picture of 0.08  in a 1 10  machine and attempt to make 

sense of finding groups of 0.005  in that picture, that is groups of five dots three places to the right of 
where they should be. Although possible to do, it seems hard to keep straight in my head and it makes 
my brain hurt! 
 
Here’s a piece of advice from a mathematician: Avoid hard work!  Mathematicians will, in fact, work 
very hard to avoid hard work! 
 
Since converting decimals to fractions makes the multiplication of fractions easier, let’s do the same 
thing for division.  
 
Here are some examples. 
 

Example: Examine 0.08 0.005 . 
 
A fraction is a number that is an answer to a division problem. And, conversely, we can think of a 

division problem as a fraction. For example, the quantity 0.08 0.005  is really this “fraction”  
 

 
0.08

0.005
. 

 
(It is okay to have non-whole numbers as numerators and denominators of fractions.) 
 
To make this fraction look friendlier, let’s multiply the top and bottom by factors of ten. 
 

 
0.08 10 10 10 80

0.005 10 10 10 5

  


  
  

 

The division problem 
80

5
 is much friendlier. It has the answer 16 . (Use a 1 10  machine now to 

compute it if you like!)  
 

Example: Examine 
8.5

100
. 

 

Dividing by 100  is the same as multiplying by 
1

100
. So, 

8.5

100
, for example, can be thought of as 

 

 
1 1 5 8 5

8.5 8 0.085
100 100 10 100 1000

 
      

 
. 
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Of course, we can also think of this as   
8.5 10 85

100 10 1000





, which seems more direct. (All correct paths in 

mathematics are good and correct!) 
 
 

Example: Examine 1.51 0.07 . 
 

If I was asked to compute 1.51 0.07 , I would personally do this problem instead: 
 

 
1.51 10 10 151

0.07 10 10 7

 


 
. 

 

I see the answer 
4

21
7

.  If that same person asked me to give the answer as a decimal, then I would have 

to convert the fraction 
4

7
 into a decimal. And that is possible. The next section explains how! 

 

15. Explain why the answer to 0.9 10  must be 0.09 .  

Explain why the answer to 2.34 1000  must be 0.00234 . 

Explain why the answer to 40.04 0.01  must be .4004 .  
  

16. Compute
0.75

25
. 

 
17. Let’s put it all together. Here are some unpleasant computations. Do you want to try evaluating 

them? 
 

a)  0.3 5.37 2.07    

 

b) 
 0.1 1.01 0.1

0.11 0.09

 


 

 
  

c) 
  0.002 0.2 2.02 2.2 0.22

2.22 0.22
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CONVERTING FRACTIONS INTO DECIMALS 
 

A fraction is a number that is an answer to a division problem. For example, the fraction 
1

8
 is the result 

of dividing 1 by 8 .  And we can compute 1 8 in a 1 10  machine by making use of decimals. The 
method is exactly the same as for division without decimals.   
 

For1 8 we seek groups of eight in the following picture. 
 

 
 
None are to be found right away, so let’s unexplode. 
 

 
 

We have one group of 8, leaving two behind. 

 
 
Two more unexplosions. 

 
 
This gives two more groups of 8 leaving four behind.  
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Unexploding again  

 
 
reveals five more groups of 8 leaving no remainders.  

 

 

We see that, as a decimal, 
1

8
 turns out to be 0.125 . And as a check we have  

 

125 25 5 1
0.125

1000 200 40 8
    .  

 
 
Here are some practice problems for you to pick and choose from.   
 

18. Perform the division in a 1 10  machine to show that 
1

4
, as a decimal, is 0.25 . 

19. Perform the division in a 1 10  machine to show that 
1

2
, as a decimal, is 0.5 . 

20. Perform the division in a 1 10  machine to show that 
3

5
, as a decimal, is 0.6 . 

21. Perform the division in a 1 10  machine to show that 
3

16
, as a decimal, is 0.1875 . 

 
22. In simplest terms, what fraction is represented by each of these decimals? 

 

0.75     0.625      0.16       0.85       0.0625   
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Not all fractions lead to simple decimal representations. For example, consider the fraction 
1

3
. To 

compute it, we seek groups of three in the following picture. 
 

 
  
Let’s unexplode. 

 
 
We see three groups of 3 leaving one behind.  

 
 
Unexploding gives another ten dots to examine. 

 
 
We find another three groups of 3 leaving one behind. 

 
 

And so on. We are caught in an infinitely repeating cycle.  
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This puts us in a philosophically interesting position. As human beings we cannot conduct this, or any, 
activity for an infinite amount of time. But it seems very tempting to write 
 

1
0.33333

3
  

 
with the ellipsis representing the instruction “keep going with this pattern forever.” In our minds we can 
almost imagine what this means. But as a practical human being it is beyond our abilities: one cannot 
actually write down those infinitely many 3s represented by the ellipses. 
 
Nonetheless, many people choose not to contemplate what an infinite statement like this means and 
just carry on to say that some decimals are infinitely long and not be worried by it.  In which case, the 

fraction 
1

3
 is one of those fractions whose decimal expansion goes on forever. 

 
Notation: Many people make use of a vinculum (a horizontal bar) to represent infinitely long repeating 

decimals. For example, 0.3  means “repeat the 3 forever”  
 

0.3 0.3333  
 

and 0.38142  means “repeat the group 142 forever” after the beginning “38” hiccup: 
 

0.38142 0.38142142142142 . 
 

As another (complicated) example, here is the work that converts the fraction 
6

7
 to an infinitely long 

repeating decimal. Make sure to understand the steps one line to the next.  
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Do you see, with this 6 in the final right-most box that we have returned to the very beginning of the 
problem? This means that we shall simply repeat the work we have done and obtain the same sequence 
857142 of answers, and then again, and then again. We have   
 

 
6

0.857142857142857142857142
7
 . 

 
 
Some more practice questions if you like.  
 

23. Compute 
4

7
 as an infinitely long repeating decimal. 

24. Compute 
1

11
 as an infinitely long repeating decimal. 

 
25. Which of the following fractions give infinitely long decimal expansions?  

1 1 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10
 

 

26. Use a 1 10  machine to compute 133 6 , writing the answer as a decimal. 
 
 

27. Use a 1 10  machine to compute 255 11 , writing the answer as a decimal. 
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IRRATIONAL NUMBERS 
 

We have seen that fractions can possess finitely long decimal expansions. For example,  
 

1
0.125

8
  and 

1
0.5

2
 .  

 
And we have seen that fractions can possess infinitely long decimal expansion. For example,  
 

1
0.3333....

3
  and 

6
0.857142057142857142...

7
 . 

 
All the examples of fractions with infinitely long decimal expansions we’ve seen so far fall into a 
repeating pattern. This is curious.  
 
We can even say that our finite examples eventually fall into a repeating pattern too, a repeating 
pattern of zeros after an initial start. 
 

1
0.12500000.... 0.1250

8

1
0.50000.... 0.50

2

1
0.3

3

6
0.857142

7

 

 





 

 
 
This begs the question: Does every fraction have a decimal representation that eventually repeats? 
 
The answer to this question is YES and our method of division explains why. 
 
 
Let’s go through the division process again, slowly, first with a familiar example. Let’s compute the 

decimal expansion of 
1

3
 again in a 1 10  machine. We think of 

1

3
 as the answer to the division 

problem 1 3 , and so we need to find groups of three within a diagram of one dot. 
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We unexplode the single dot to make ten dots in the tenths position. There we find three groups of 
three leaving a remainder of 1 in that box.  

 
 
Now we can unexploded that single dot in the tenths box and write ten dots in the hundredths box. 
There we find three more groups of three, again leaving a single dot behind. 

 
 
And so on. We are caught in a cycle of having the same remainder of one dot from cell to cell, meaning 

that the same pattern repeats. Thus we conclude
1

0.333...
3
 . The key point is that the same remainder 

of a single dot kept appearing.  
 

Here’s a more complicated example. Let’s compute the decimal expansion of 
4

7
in the 1 10  machine. 

That is, let’s compute 4 7 .  
 

 
 
We start by unexploding the four dots to give 40 dots in the tenths cell. There we find 5 groups of seven, 
leaving five dots over. 

 
 
Now unexplode those five dots to make 50 dots in the hundredths position. There we find 7 groups of 
seven, leaving one dot over. 
 



22 

 

 
 
Unexplode this single dot. This yields 1 group of seven leaving three remaining.  

 
 
Unexplode these three dots. This gives 4 groups of seven with two remaining.  

 
 
Unexplode the two dots. This gives 2 groups of seven with six remaining. 

 
 
Unexplode the six dots. This gives 8 groups of seven with four remaining. 
 

 
 
But this is predicament we started with: four dots in a box! 
 
So now we are going to repeat the pattern and produce a cycle in the decimal representation. We have  
  

4
0.571428 571428 571428

7
 . 

 
Stepping back from the specifics of this problem, it is clear now that one must be forced into a repeating 
pattern. In dividing a quantity by seven, there are only seven possible numbers for a remainder number 
of dots in a cell - 0, 1, 2, 3, 4, 5, or 6 – and there is no option but to eventually repeat a remainder and so 
enter a cycle.   
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In the same way, the decimal expansion of 
18

37
 must also cycle. In doing the division, there are only 

thirty-seven possible remainders for dots in a cell (0, 1, 2, …, 36). As we complete the division 
computation, we must eventually repeat a remainder and again fall into a cycle.  
 
We have just established a very interesting fact. 
 

ALL FRACTIONS HAVE A REPEATING DECIMAL REPRESENTATION.  
 
(A repeating pattern of zeros is possible. In fact, as a check, conduct the division procedure for the 

fraction 
1

8
. Make sure to understand where the cycle of repeated remainders commences.) 

 
This now opens up a curious idea: 
 

A quantity given by a decimal expansion that does not repeat cannot be a fraction! 
 
For example, the quantity 
 

 0.10 1100 111000 11110000 11111000000  

 
is designed not to repeat (though there is a pattern to this decimal expansion) and so represents a 
number that is not a fraction. 
 
A number that is equivalent to the ratio of two whole numbers (that is, a fraction) is called a rational 
number. A number that cannot be represented this way is called an irrational number. 
 
It looks like we have just proved that irrational numbers exist! Not all numbers are fractions.  
 
In fact, we can now invent all sorts of numbers that can’t be fractions! For example 
 

 0.102030405060708090100110120130140150  
and 

0.3030030003000030000030000003  
 
are irrational numbers. 
 

Of course, we have all heard that numbers like 2  and   are irrational numbers. It is not at all obvious 
why they are and how you would go about proving that they are. (In fact, it took mathematicians about 
2000 years to finally establish that   is an irrational number. Swiss mathematician Johann Lambert 
finally proved it so in 1761.) But if you are willing to believe that these numbers are irrational, then you 
can say for sure that their decimal expansions possess no repeating patterns!  
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DECIMALS IN OTHER BASES 
 

Who said we need to stay with a 1 10  machine? 
 

The following picture shows that 1432 13 110 2R  in a 1 5 machine. 

 

 
 

If we work with reciprocals of powers of five we can keep unexploding dots and continue the division 
process. 
 

 
Here goes! 
 

 
(This reads as 1432 13 110.1 0.2R   if you like.)  

 

 
(This reads as 1432 13 110.11 0.02R   if you like.)  
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And so on. We get, as a statement of base 5  arithmetic, 
 

 1432 13 110.1111  . 
 
To translate this to ordinary arithmetic we have that 
 

1432  in base five is 1 125 4 25 3 5 1 1 242        , 

13  in base five is 1 5 3 1 8    , 

110.111...  in base five is 
1 1 1

30
5 25 125

     , 

 
so we are claiming, in ordinary arithmetic, that  
 

 
1 1 1

242 8 30
5 25 125

       . 

 
Whoa!  
 
Question: What does the geometric series formula from chapter 7 say about the sum 

1 1 1

5 25 125
   ? Does it equal a quarter? (To be clear, in chapter 7 we showed that  

 

2 3 1
1

1
x x x

x
    


.  

 
Multiplying through by x  then gives 
 

 
2 3 4

1

x
x x x x

x
    


. 

 
Perhaps it is this second version of the geometric formula we need to work with now.)   
 
 
Here are some (challenging) practice questions if you are up for them. 
 

28. Compute 8 3  in a base 10  machine and show that it yields the answer 2.666 . 
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29. Compute 1 11  as a problem in base 3  and show that it yields the answer 0.0202020202 .  

(In base three, “11” is the number four, and so this question establishes that the fraction 
1

4
 

written in base three is 0.0202020202 .) 
 
 

30. Show that the fraction 
2

5
, written here in base ten, has the “decimal” representation 

0.121212  in base four. (That is, compute 2 5 in a 1 4  machine.)  
 
 

31. CHALLENGE: What fraction has decimal expansion 0.3333  in base 7 ? Is it possible to answer 

this question by calling this number x  and multiplying both sides by 10 ? (Does “10 ” represent 
ten?) 

 
 

32.  Use an 1 x  machine and x -mals to show that 
2 3 4

1 1 1 1 1

1x x x x x
    


. 
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WILDS EXPLORATIONS 

 
Here’s are some “big question” investigations you might want to explore, or just think about. Have fun! 
 

EXPLORATION 1: WHICH FRACTIONS GIVE FINITE DECIMAL EXPANSIONS? 
 

We’ve seen that 
1

0.5
2
  and 

1
0.25

4
  and 

1
0.125

8
  each have finite decimal expansions. (We’re 

ignoring infinite repeating zeros now.) 
 
Of course, all finite decimal expansions give fractions with finite decimal expansions! For example, 

0.37  is the fraction
37

100
, showing that  

37

100
 has a finite decimal expansion. 

 
 

What must be true about the integers a  and b (or true just about a  or just about b ) for the fraction 

a

b
 to have a finite decimal expansion?   

  

 

EXPLORATION 2: BACKWARDS? ARE REPEATING DECIMALS FRACTIONS? 
 

We have seen that 
1

0.3
3
  and  

4
0.571428

7
 , for example, and that every fraction gives a decimal 

expansion that (eventually) repeats, perhaps with repeating zeros. 
 
Is the converse true? Does every infinitely repeating decimal fraction correspond to a number that is 
a fraction?  
 

Is 0.17  a fraction? If so, which fraction is it?  

Is 0.450  a fraction? If so, which fraction is it? 

Is 0.322222... 0.32  a fraction? Is 0.17023  a fraction? 
 
Indeed, does every repeating decimal have a value that is a fraction? 
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SOLUTIONS 

 
As promised, here are my solutions to the questions posed. 
 

1. “Six tenths” says exactly what the number is.  
 

2. Indeed both students are correct. Performing some explosions on Subra’s picture gives JinJin’s 
picture. (And performing some unexplosions on JinJin’s picture gives Subra’s!) 
 

3. a) B    b) C 
 

4. We have, in order, 
1

20
, 

1

5
, 

4

5
, and 

1

250
. 

 

5. We have, in order, 
4

0.4
10

 , 
4

0.04
100

 , 
5

0.05
100

 , 
5

0.005
1000

 , and
8

0.0008
10000

 .          

 
6. a) B   b) D 

 

7. In order, we have 0.35 , 0.64 , 0.602 , 0.34 , and 0.75 . 
 

8. a) As a mixed number it is 
3

2
10

. Or we could write
3 20 3 23

2
10 10 10 10

    .    

 

b) 
4 1

17 17
100 25

  .   

 

c) 
1003

1003
10000

. 

 
9. a) Unexploding one dot in the tenths box does “add” ten dots to the hundredths box. 

 
b) Unexploding one dot in the tenths box does now give us 19 dots in the hundredths box. 
Unexploding these gives 190 dots in the thousandths box. 
 
c) There isn’t much to say here. One can see that one can convert any one picture to any other 
by explosions and/or unexplosions. 
 
d) Yes! All the pictures are the same, so 0.19 and 0.190 are the same number. 

 
 

10. a) 5.3    

b) 
2

7 7.2
10
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c) 13.5      

d) 
15

106 106.15
100

     

e) 
3 12

3 3 3.12
25 100

        

f) 
1 25

2 2 2.25
4 100

       

g) 
11 275

3 3 3.275
40 1000

     

 

11. 0.05 0.006 0.056   and 0.05 0.006 0.0 | 5 | 6 0.044    . Drawing the dots and boxes 

makes these answers clear. 
 

12. If I draw dots and boxes, then I agree with Agatha.  
 

 
 
But I don’t agree with Percy. 
 

 
 

 

13. Multiplying by 100  is the same as multiplying by ten and then multiplying by ten again.  
 

14. We have 
4 5 20 2

0.04 0.5 0.02
100 10 1000 100

      .  

 

(We could have seen this right away too if we noted that 0.5  is a half, and one half of 0.04  is 

0.02 .) 
 

We have 
3 8 5 5

1000 0.0385 1000 30 8 38.5
100 1000 10000 10

 
         

 
. 

 

15. We have 
0.9 9

0.09
10 100

  . 
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We have 
2.34 1 3 4 2 3 4

2 0.00234
1000 1000 10 100 1000 10000 100000

 
        

 
  . 

We have 
4 1 4 4

40 0.4004
100 100 10 10000

 
     

 
. 

 
 

16.  
0.75 75 3

0.03
25 2500 100

   . 

 
 

17. This is technically a yes/no question, and the smart answer is no.  
 

For those who answered yes, here are my approaches to the problems.  
   

a)    
3 3 9 9

0.3 5.37 2.07 0.3 3.3 3 0.99
10 10 10 100

 
          

 
 

 

b)  
   0.1 1.01 0.1 0.1 0.91 1.01 101 505

5.05
0.11 0.09 0.2 0.2 20 100

  
    


. 

 
 

c)  

     

  

  

0.002 0.2 2.02 2.2 0.22 0.002 0.404 1.98

2.22 0.22 2

0.406 1.98

2

4 6 9 8
1 1000 100

10 1000 10 100

2 1000 100

400 6 100 90 8

2 1000 100

406 198

2 1000 100

80388

2 100000

40194
0.40194

100000

   






  
      

  


 

  


 




 




 

 

 
  Whoa! 
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18. Do it! 
 

19. Do it too! 
 

20. Yep. Do it! 
 

21. You guessed it. Do it! 
 

22. In order, we have 
3

4
, 

5

8
, 

4

25
, 

17

20
, and 

5

80
. 

 

23. We get 
4

0.571428 571428 571428 571428 ...
7
 . 

 

24. We get 
1

0.09 09 09 09 ...
11

 . 

 

25. The fractions 
1

3
, 

1

6
, 

1

7
, and 

1

9
 have infinitely long decimal expansions. 

 

26. 
133

22.166666...
6

  . 

 

27. 
255

23.18181818....
11

 . 

 
28. Do it! 

 
29. Do it too! 

 
30. Yep, do it! 

 

31. Let’s do all our writing in a 1 7  machine. So the number seven is 10  and one less than this 
number is 6 . Also, notice that multiplying a number by seven in a 1 7  machine has the 
effect of addending a zero at the end of the number. (Can you see why? It is the same reason 

why multiplying by ten in a 1 10  machine has the effect of addending a zero.) Multiplying by 
seven also “shifts the decimal point” one place. 
 

Set 0.333.... x . 
 
Multiply each side by seven (which looks like 10 ). This gives 
 

 3.3333... 10x .  
 

The left side is 3 0.3333... , that is, 3  plus the original number. 
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 3 10x x   
 
Subtract x  from both sides. 
 

 3 6x  
 
So x  must equal a half! 
 

 
32. Can you see how to do it? 

 
 
 


