
  
  

EXPLODING DOTS 
CHAPTER 6  

ALL BASES, ALL AT ONCE 
 
The first chapters of this story have taken us through much of grade school mathematics. Let’s now 
head on to advanced high school algebra. Whoa! 
 
But here’s the thing: there is nothing to it. We’ve already done all the work. 
 

The only thing we have to realize is that there is nothing special about a 1 10  machine. We could do 

all of grade school arithmetic in a 1 2  machine if we wanted to, or a 1 5  machine, or even a 

1 37  machine. The math doesn’t care in which machine we do it. It is only us humans with a 

predilection for the number ten that draws us to the 1 10  machine.  
 
Let’s now go through much of what we’ve done. But let’s now do it in all possible machines, all at once!  
 
Sounds crazy. But it is surprisingly straightforward. 
 

DIVISION IN ANY BASE  
 

Here’s the division problem 276 12  we did earlier in a 1 10  machine. We see the answer 23 . Stare 
at this picture for a moment – it will soon sneak back up on us. 
 

 
 
Let’s now do the same division problem in another base. But the only tricky part is that I am not going to 

tell you which machine we are in! We could be in a 1 10  machine again, I am just not going to say. 

Maybe it will be in a 1 2 machine, or a 1 4  machine or a 1 13  machine. You just won’t know as 
I am not telling. It’s the mood I am in!  
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Now, in high school algebra there seems to be a favorite letter of the alphabet to use for a quantity 
whose value you do not know. It’s the letter x . 
 

So let’s work with an 1 x  machine with the letter x  representing some number whose actual value 
we do not know.  
 

In a 1 10  machine the place values of the boxes are the powers of ten: 1, 10 , 100 , 1000 , … .  

In a 1 2  machine the place values of the boxes are the powers of two: 1, 2 , 4 , 8 , 16 , …. 
And so on.  
 

Thus, in an 1 x  machine, the place values of the boxes will be the powers of x . 
 

 
 

As a check, if I do tell you that x  actually is 10  in my mind, then the powers 1, x , 2x , 3x , … match the 

numbers 1, 10 , 100 , 1000 , … , which is correct for a 1 10  machine. If, instead, I tell you x  is really 

2  in my mind, then  the powers 1, x , 
2x , 

3x , … match the numbers 1, 2 , 4 , 8 , 16 , …, which is 

correct for a 1 2  machine. 
 

This 1 x  machine really is representing all machines all at once! 
 
 
Okay. Out of the blue! Here’s an advanced high school algebra problem.  

 
 

Compute    22 7 6 2x x x    . 

 
 

Can you figure out what this means on an 1 x  machine? Try playing with this before reading on. 
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Here’s what 22 7 6x x   looks like in an 1 x  machine. It’s two 2x s, seven x s, and six ones.  
 

 
And here’s what 2x   looks like.    
 

 
 

The division problem    22 7 6 2x x x     is asking us to find copies of 2x   in the picture of 

22 7 6x x  . 

 
 
 

I see two copies of 2x   at the x  level and three copies at the 1   level. The answer is 2 3x  . 
 

Stare at the picture for    22 7 6 2 2 3x x x x      .  

Does it look familiar? 

 
We’ve just done a high school algebra problem as though it is a grade school arithmetic problem! 
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What’s going on? 
 

Suppose I told you that x  really was 10  in my head all along. Then 22 7 6x x  is the number 

2 100 7 10 6    , which is 276 . And 2x   is the number 10 2 , that is, 12 . And so we computed 

276 12 . We got the answer 2 3x  , which is 2 10 3 23   , if I am indeed now telling you that x  is

10  . 
 
So we did just repeat a grade-school arithmetic problem! 
 
 

Aside: By the way, if I tell you that x  was instead 2  , then 
 

 
22 7 6 2 4 7 2 6x x       , which is 28 ,  

 2 2 2x    , which is 4 ,  
and 

 2 3 2 2 3x     , which is 7 .       
 

We just computed 28 4 7  , which is correct! 
 

Doing division in an 1 x   machine is really doing an infinite number of division problems all in 
one hit. Whoa! 

 

Try computing    3 22 5 5 6 2x x x x      in an 1 x  machine to get the answer 
22 3x x  . 

(And if I tell you x  is 10  in my mind, can you see that this matches 2556 12 213  ?) 
 
 
 

In high school, numbers expressed in an 1 x  machine are usually called polynomials. They are just 
like numbers expressed in base 10 , except now they are “numbers” expressed in base x . (And if 

someone tells you x  is actually 10 , then they really are base 10  numbers!)  
 
Keeping this in mind makes so much of high school algebra so straightforward: it is a repeat of grade 

school base 10  arithmetic.  
 
 
Here are some practice problems for you to try, it you like. My answers to them appear at the end of the 
chapter.   
 

1. a) Compute    4 3 22 3 5 4 1 2 1x x x x x      . 

b)  Compute    4 3 2 23 6 5 3 1x x x x x x       . 

 

If I tell you x  is actually 10  in both these problems what two division problems in ordinary 
arithmetic have you just computed? 
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2. Here’s a polynomial division problem written in fraction notation. Can you do it? (Is there a 

slight difficulty to watch out for?)  
 

4 3 2

2

2 4 6 3

3

x x x x

x

   


 

 

3. Show that    4 3 24 6 4 1 1x x x x x       equals 3 23 3 1x x x   . 

a) What is this saying for 10x  ? 

b) What is this saying for 2x  ? 
c) What is this saying  for x  equal to each of 3, 4, 5, 6, 7, 8, 9, and 11? 
d) What is it saying for 0x  ? 

e) What is it saying for 1x   ? 
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A PROBLEM 
 
Okay. Now that we are feeling really good about doing advanced algebra, I have a confession to make. 
I’ve been fooling you!  
 
I’ve been choosing examples that are designed to be nice and to work out just beautifully. The truth is, 
this fabulous method of ours doesn’t usually work so nicely. 
 
Consider, for example,  
 

3 3 2

2

x x

x

 


 . 

 
Do you see what I’ve been avoiding all this time? Yep. Negative numbers. 
 

Here’s what I see in an 1 x  machine. 
 
 

 
 

We are looking for one dot next to two dots in the picture of 
3 3 2x x  .  And I don’t see any!  

 
So what can we do, besides weep a little? Do you have any ideas?  
   
 
It is tempting to say that we should just unexplode some dots. That’s a brilliant idea! Except … we don’t 
know a value for x  and so don’t know how many dots to draw when we unexplode. Bother! 
 
We need some amazing flash of insight for something clever to do. Or maybe polynomial problems with 
negative numbers just can’t be solved with this dots and boxes method. 
 
What do you think? Any flashes of insight? 
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RESOLUTION 
 
Here’s the division problem we are stuck on. 
 

3 3 2

2

x x

x

 


 

 

And here is the picture for it again an 1 x  machine. 
 

 
 

We are looking for copies of 2x  , one dot next to two dots, anywhere in the picture of 
3 3 2x x  .  

We don’t see any.  
 
And we can’t unexplode dots to help us out as we don’t know the value of x . (We don’t know how 
many dots to draw when we unexplode.)  
 
The situation seems hopeless at present.  
 
But I have a piece of advice for you, a general life lesson in fact. It’s this. 
 

IF THERE IS SOMETHING IN LIFE YOU WANT, MAKE IT HAPPEN!  
(And deal with the consequences.)  

 
Right now, is there anything in life we want?  
 
Look at that single dot way at the left. Wouldn’t it be nice to have two dots in the box next to it to make 
a copy of 2x  ? 
 
So let’s just put two dots into that empty box! That’s what I want, so let’s make it happen! 
 
But there are consequences: that box is meant to be empty. And in order to keep it empty, we can put in 
two antidots as well!  
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Brilliant! 
 
We now have one copy of what we’re looking for. 
 

 
 

Is there anything else in life you want right now? Can you create another copy of 2x   anywhere? 
 
I’d personally like a dot to the left of the pair dots in the rightmost box. I am going to make it happen! I 

am going to insert a dot and antidot pair. Doing do finds me another copy of 2x  . 
 

 
 
This is all well and good, but are we now stuck? Maybe this brilliant idea wasn’t actually helpful in the 
end. 
 
Stare at this picture for a while. Do you notice anything? 
 
Look closely and we start to see copies of the exact opposite of what we’re looking for! Instead of one 
dot next to two dots, there are copies of one antidot next to two antidots. 
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Whoa!  
 

And how do we read the answer? We see that    3 3 2 2x x x     is 
2 2 1x x  . 

 
Fabulous! 
 
So actually I was lying about fooling you. We can actually do all polynomial division problems with this 
dots and boxes method, even ones with negative numbers! 
 
 
If you are looking for some practice problems, feel free to try these. Try them with pencil and paper, and 
then with the app perhaps. Answers, as usual, are at the end of this lesson. 
 
 

4. Compute 

3 23 3 1

1

x x x

x

  

 . 
 

5. Try 
3 24 14 14 3

2 3

x x x

x

  


. 

 

6. If you can do this problem, 
5 4 3 2

2

4 2 7 4 6 1

1

x x x x x

x x

    

 
, you can probably do any problem!  

 

7. This one is crazy fun: 
10

2

1

1

x

x




. 

 
 
Aside: Is there a way to conduct the dots and boxes approach with ease on paper? Rather than draw 
boxes and dots, can one work with tables of numbers that keep track of coefficients? (The word 
synthetic is often used for algorithms one creates that are a step or two removed from that actual 
process at hand.) 
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REMAINDERS 
 

It is just as easy to identify remainders in base x  division problems as it is in base 10  arithmetic.  
 

Play with   
4 3 2

2

4 7 9 3 1

1

x x x x

x x

   

 
 

 

in an 1 x  machine. Can you see that it equals 24 3 3x x   with a remainder of 2 3x   yet 

to be divided by 
2 1x x  ? 

 
People typically write this answer as follows: 
 

4 3 2
2

2 2

4 7 9 3 1 2 3
4 3 2

1 1

x x x x x
x x

x x x x

    
   

   
. 

 
 
Here are some practice problems if you would like to play some more with this idea.  
 

8. Can you deduce what the answer to    22 7 7 2x x x    is going to be before doing it? 

9. Compute 

4

2 3

x

x  . 
 

10. Try this crazy one: 

5 4 3 2

3

5 2 7

4 1

x x x x

x x

   

  .  
 
If you do it with paper and pencil, you will find yourself trying to draw 84 dots at some point. Is 
it swift and easy just to write the number “84”? In fact, how about just writing numbers and not 
bother drawing any dots at all? 
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OPTIONAL: THE REMAINDER THEOREM 
 
High school teachers have asked me if the dots and boxes approach can be used to explain the 
“Remainder Theorem.” This optional section is for anyone interested in learning about the mathematics 
of this piece of extra-advanced polynomial algebra.  
 
WARNING: This passage is not for the faint hearted! 
   
 

Let’s examine 
3 3 3

2

x x

x

 


. This is the polynomial   3 3 3p x x x    divided by the simple (linear) 

polynomial 2x  .   
 

Here’s what I get on the 1 x  machine. (I had to add in some of dot/antidot pairs.) Check this! 
 

 
  

We see that 
3

23 3 5
2 1

2 2

x x
x x

x x

 
   

 
. There is a remainder of 5 . 

 
 

But let’s look at the picture of 
3 3 3x x   carefully, taking note of the loops.  

 

We see one loop at the 
2x  level, two at the x  level, and one at the ones level. Plus we see a remainder 

of 5  . As each loop represents the quantity 2x  , this means that  
 

      3 2( ) 3 3 2 2 2 2 1 5p x x x x x x x x             . 

 

(This is one 2x   at the 
2x  level, two at the x  level, and one at the ones level, and 5 .) 

 

This shows that  p x  is a combination of  2x  s plus an extra 5 . 

 

     multiples of 2 5p x x   . 

 

That “ 5  ” is standing out like a sore thumb. If you put in 2x   we get 
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  2   multiples of 0    5 0 5 5P      . 

 

In general, dividing a polynomial  p x  by a term of the form x h  will give 

 

     multiples of p x x h r         

 

where r  is a remainder. Putting x h  shows that  p h r . 

 
This is the Remainder Theorem for polynomials. 
 

Dividing a polynomial  p x  by a term x h  gives a remainder that is a single number equal to 

 p h , the value of the polynomial at x h .  

 

People like this theorem because it shows that if   0p h   for some number h , then  p x  is an 

multiple of x h . (The remainder is zero.) This gives the Factor Theorem for polynomials. 
 

A polynomial p  has a factor x h  precisely when h  is a zero of the polynomial, that is, 

precisely when   0p h  .    

 
This is a big deal for people interested in factoring.  
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MULTIPLYING POLYNOMIALS 
 
Can we multiply polynomials? You bet!  
 

Here’s the polynomial 22 1x x  .  
 

 
 
If we want to multiply this polynomial by 3  we just have to replace each dot and each antidot with 
three copies of it. (We want to triple all the quantities we see.) 
 

 
 

We literally see that  23 2 1x x   is 
26 3 3x x  . 

 
 

Suppose we wish to multiply 
22 1x x   by 3  instead. This means we want the anti-version of tripling 

all the quantities we see. So each dot in the picture of 
22 1x x   is to be replaced with three antidots 

and each antidot with three dots.  
 

 
 

We have  2 23 2 1 6 3 3x x x x       . We could also say that  23 2 1x x    is the anti-version 

of  23 2 1x x  . 

 

Now suppose we wish to multiply 
22 1x x   by 1x  . Since 1x   looks like this 
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we need to replace each dot in the picture of 22 1x x   with one-dot-and-one-dot, and each antidot 
with the anti-version of this, which is one-antidot-and-one-antidot. (This is now getting fun!) 
 

 
 

After some annihilations we see that    21 2 1x x x     equals 
3 22 1x x  . 

 

Now let’s multiply 
22 1x x   with 2x  , which looks like this. 

 

 
 
Each dot is to be replaced by one-dot-and-two-antidots, and each antidot with the opposite of this. 
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We see   2 3 22 2 1 2 5 3 2x x x x x x       . 

 

Okay, you’re turn. Try 
22 1x x   times 

22 3 1x x  . Do you get this picture? (I’ve not colored it this 

time!) Do you see the answer 4 3 24 4 3 4 1x x x x    ?  
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ADDING AND SUBTRACTING POLYNOMIALS 
 

Adding and subtracting in base x  is just like adding and subtracting in base 10 . And it is easier in fact! 
Since we don’t know the value of x  we will never explode dots. That is, we never need to perform 
“carries” as one does in base 10  arithmetic! 
 
 

 
 
 

We can draw dots and boxes pictures of these in an 1 x  machine if we like. 
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WILD EXPLORATIONS 

 
Here are some “big question” investigations you might want to explore, or just think about. Have fun! 
 
 

EXPLORATION 1: CAN WE EXPLAIN AN ARITHMETIC TRICK? 
 
Here’s an unusual way to divide by nine.  
 

To compute 21203 9 , say, read “ 21203” from left to right computing the partial sums of the digits 
along the way 

 
 
and then read off the answer  

21203 9 2355 8R  . 

In the same way,  
 

          1033 9 1| 1 0 |1 0 3 | 1 0 3 3 114 7R R          

and 

          2222 9 246 8R  . 

 
Can you explain why this trick works?  
 
 

Here’s the approach I might take: For the first example, draw a picture of 21203  in a 1 10

machine, but think of nine as 10 1 . That is, look for copies of  in the picture.  
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EXPLORATION 2: CAN WE EXPLORE NUMBER THEORY? 
 

Use an 1 x  machine to compute each of the following 
 

a) 
2 1

1

x

x




         b) 

3 1

1

x

x




       c) 

6 1

1

x

x




      d) 

10 1

1

x

x




  

 

Can you now see that 
number 1

1

x

x




 will always have a nice answer without a remainder? 

 
Another way of saying this is that  
 

    number 1 1 somethingx x    . 

 

For example, you might have seen from part c) that   6 5 4 3 21 1 1x x x x x x x        . This 

means we can say, for example, that 
617 1  is sure to be a multiple of 16 ! How? Just choose 17x   

in this formula to get  
 

     617 1 17 1 something 16 something      . 

 
 

a) Explain why 
100999 1  must be a multiple of 998 .  

 

b) Can you explain why 1002 1  must be a multiple of 3, and a multiple of 15, and a multiple of 31 and 

a multiple of 1023? (Hint:  
50

100 2 502 2 4  , and so on.)   

 

c) Is 
number 1x   always a multiple of 1x  ? Sometimes, at least? 

  

d) The number 1002 1  is not prime. It is a multiple of 17 . Can you see how to prove this? 
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EXPLORATION 3: AN INFINITE ANSWER? 
 

Here is a picture of the very simple polynomial 1  and the polynomial 1 x . 
 

 
 

Can you compute 
1

1 x
? Can you interpret the answer?  

 
(We’ll explore this example in the next chapter.) 
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SOLUTIONS 

 
As promised, here are my solutions to the question posed. 
 
 
1.  

a)    4 3 2 3 22 3 5 4 1 2 1 2 1x x x x x x x x           

b)    4 3 2 2 23 6 5 3 1 2 3x x x x x x x x           

 

And if x  happens to be 10, we’ve just computed 23541 21 1121   and 13653 111 123  . 
 
 

2.  We can do it. The answer is 2 2 1x x  . 

 
 
3.  

a) For 10x   it says 14641 11 1331   
 

b) For 2x   it says 81 3 27   
 

c)  For 3x   it says 256 4 64   

For 4x   it says 625 5 125   

For 5x   it says 1296 6 216   

For 6x   it says 2401 7 343   
For 7x   it says 4096 8 512   

For 8x   it says 6561 9 729   

For 9x   it says 10000 10 1000   

For 11x   it says 20736 12 1728   
 

d) For 0x   it says 1 1 1  .  
 

e) For 1x    it says 0 0 0  . Hmm! That’s fishy! (Can you have a 10 machine?)  
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4. 
3 2

23 3 1
1

1

x x x
x x

x

  
  


. 

 

5.  
3 2

24 14 14 3
2 4 1

2 3

x x x
x x

x

  
  


. 

 

6. 
5 4 3 2

3 2

2

4 2 7 4 6 1
4 2 5 1

1

x x x x x
x x x

x x

    
   

 
. 

 

7. 
10

8 6 4 2

2

1
1

1

x
x x x x

x


    


. 

 
 

8. We know that    22 7 6 2 2 3x x x x       so I bet    22 7 7 2x x x     turns out to be 

1
2 3

2
x

x
 


. Does it?  

 

9.  
4

2

2 2

9
3

3 3

x
x

x x
  

 
. 

 

10.  
2

2

3

14 82 14
5 2 21

4 1

x x
x x

x x

  
  

 
. 

 


