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INSTRUCTIONS 

 
 
 

1. Start on PAGE 4 and think about the puzzle presented there. 
 

Don’t fret about trying to explain it – just play with it a bit and then let it sit at the back of your 
mind. 

 
 

2. Start the EXPLODING DOTS story on page 6.  
 
Watch the two videos. That might be enough to entice you to keep watching the videos and the 
material that follow it on that site. If that is the case, ignore these notes and just keep watching 
the videos on that site. 
 
Have a fun experience watching videos! Check out the web app too. 
 

3. If you want, after watching the videos, read through the text in these notes and try some or all 
of the practice problems – as many as you feel like. 

 
You can check your answers in the solutions section of these notes. 

 
 
Just enjoy having a mathematical experience with a topic that has swept the globe. Well over 5.9 
million students from over 150 countries on this globe have played with the stunning story of 
EXPLODING DOTS. Enjoy it too!  

 
  

 
Tanzania, 2018 
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1. PLACE-VALUE MACHINES 
 
A MIND-READING TRICK 
 
Here’s a classic trick you can perform with a friend.   
 
Write on a board or on a piece of paper the following five groups of numbers for all to see. 
 

 
 
Ask your friend to silently think of a number between 1 and 31. (She or he may choose the number 1 
itself if they like, or the number 31.) 
 
Now perform the mindreading trick by having the following conversation with your friend. 
 
 “Suzzy. Is the number you are thinking of in group A?”     “Yes.” 
 “Is the number you are thinking of in group B?”    “Yes.” 
 “Is it in group C?”     “No.” 
 “Is it in group D?”     “No.” 
 “Group E?”      “Yes!” 
  

“Ahh … your number is 25.”    “Wow! Yes it is!” 
 
Repeat the game a few more with your friend noting each time which groups elicit a “yes” answer as the 
game is played. The secret number they have in mind is simply the sum of the top-left corner numbers 
in each group with a yes answer. For example, Suzzy answered YES YES NO NO YES. Groups A, B, and E 
have top left numbers 16, 8, and 1, respectively, and indeed 16 8 1 25+ + = . 
 

 
Suzzy’s responses for the number 25. 

 
As practice, check that if Sameer is thinking the number 13, he will answer NO YES YES NO YES and 
indeed 8 4 1 13+ + = .  
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Invite your friend to figure out what you are doing. And then, can you and your friends figure out why 
this trick works? What’s special about the top-left numbers of each group?  
 
Some Things You Might Notice or Question  
 

1. It is curious that group E contains all the odd numbers. 
 

2. Group A contains all the numbers 16 and above.  
 

3. What’s up with the number 31? Why must we choose between 1 and 31? 
 

4. There is definitely a pattern to the numbers in the top-left corner of each card. 
 
 
As we move through this chapter, keep this puzzle in mind. Its secrets will unfold.  
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A STORY OF STRANGE MACHINES 
 

Videos:  
Introductory video. 
The first machine video (+ all follow-on content you see!)  

Web App: 
First Experience. 

 

 
 
Here’s a story that is not true.  
 
When I was a child I, James, invented a machine – not true – and this machine is nothing more than a 
row of boxes that extends as far to the left as I could ever desire.  
 
I gave this machine of mine a name. I called it a “two-one machine” both written and read in a funny 
backwards way. (I knew no different as a child.)  
 

 
 
 
And what do you do with this machine? You put in dots. Dots always go into the rightmost box.  
Put in one dot, and, well, nothing happens: it stays there as one dot. Ho hum! 
 

 
 

https://gdaymath.com/lessons/explodingdots/1-1-welcome/
https://gdaymath.com/lessons/explodingdots/1-2-1-leftarrow-2-machine/
https://www.explodingdots.org/island/I1
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But put in a second dot – always in the rightmost box – and then something exciting happens. 
 

Whenever there are two dots in a box they explode and disappear – KAPOW! – to be replaced by 
one dot, one box to the left.  
 

 
 
(Do you see now why I called this a “1 ← 2 machine” written in this funny way?) 
 
We see that two dots placed into the machine yields one dot followed by zero dots. 
Putting in a third dot – always the rightmost box – gives the picture one dot followed by one dot.  
 

 
 
I realized that this machine, in my untrue story, was giving codes for numbers.  
 
Just one dot placed in the machine, stayed as one dot. Let’s say that that the 1 ← 2 machine code for 
the number one is 1.   
 
Two dots placed into the machine, one after the other, yielded one dot in a box followed by zero dots. 
Let’s say that the 1 ← 2 machine code for the number two is 10. 
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Putting a third dot in the machine gives the code 11 for three. 
 

 
 
 
Question: What’s the 1 ← 2 machine code for four? 
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Putting a fourth dot into the machine is particularly exciting: we are in for multiple explosions!  
 

 
 
 
The 1 ← 2 code for four is 100. 
 

Question: What will be the code for five?  Can you see it’s 101? 
 
And the code for six? Adding one more dot to the code for five gives 110 for six.   
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Actually, we can also get this code for six by clearing the machine and then putting in six dots all at once.  
Pairs of dots will explode in turn to each produce one dot, one box to their left.  
 
Here is one possible series of explosions. Sound effects omitted!  
 

 
 

Question:  Do you get the same final code of 110 if you perform explosions in a different order? 
(Try it!)  

 
 
Here are some practice questions you might or might not want to try. Solutions are at the end of this 
document. 
 

Practice 1:  
a) What is the 1 ← 2 machine code for the number thirteen? (It turns out to be 1101. Can you 

get that answer?) 
b) What is the code for fifty in this machine? (Whoa!)  

 
Practice 2: Could a number ever have code 100211 in a 1 ← 2 machine, assuming we always choose 
to explode dots if we can? 
 
Practice 3 (Challenge): Which number has code 10011 in a 1 ← 2 machine? 
 

 
 
There are hours of fun to be had playing with codes in a 1 ← 2 machine.  
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OTHER MACHINES 
 

Video:  
Other machines video (+ all follow-on content you see). 
 

 Web App: 
First Experience. 

 
 

 
 
But then one day, I had an astounding flash of insight! 
 
Instead of playing with a 1 ← 2 machine, I realized I could play with a 1 ← 3 machine (again written and 
read backwards, a “three-one “machine). Now whenever there are three dots in a box, they explode 
away to be replaced with one dot, one box to the left.  
 
Here’s what happens to fifteen dots in a 1 ← 3 machine.  

 

https://gdaymath.com/lessons/explodingdots/1-3-machines/
https://www.explodingdots.org/island/I1
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First there are five explosions in the first box, with each explosion making a dot in the second box to the 
left. Then three of those dots explode away. This leaves behind two dots and makes one new dot one 
place to the left. We thus see the code 120 for fifteen in a 1 ← 3 machine. 
 

Question: What is the 1 ←3 machine code for the number thirteen?   
 
 
There are hours of fun to be had working out the codes for numbers in a 1 ← 3 machine. 
 
But then I had another flash if insight. Instead of doing a 1 ← 3 machine, I realized I could do a  1 ← 4 
machine, or a 1 ← 5 machine, or any numbered machine I like! 
 
Try some of these practice problems if you like. 
 

Practice 4:  
a) Show that the code for four in a 1 ← 3 machine is 11.  
b) Show that the code for thirteen in a 1 ← 3 machine is 111. 
c) Show that the code for twenty in a 1 ← 3 machine is 202. 

 
Practice 5: Could a number have code 2041 in a 1 ← 3 machine? If so, would the code be “stable”? 
 
Practice 6: Which number has code 1022 in a 1 ← 3 machine? 
 
We can keep going!  
 
Practice 7: What do you think rule is for a 1 ← 4 machine?  
 
Practice 8: What is the 1 ← 4 code for the number thirteen? 
 
Practice 9: What is the 1 ← 5 code for the number thirteen? 
 
Practice 10: What is the 1 ← 9 code for the number thirteen?  
 
Practice 11: What is the 1 ← 5 code for the number twelve? 
 
Practice 12: What is the 1 ← 9 code for the number twenty? 
 
Practice 13:  

a) What is the 1 ← 10 code for the number thirteen? 
b) What is the 1 ← 10 code for the number thirty-seven? 
c) What is the 1 ← 10 code for the number 5846? 
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THE 1 10←  MACHINE 
 

Video:  
The 1  10 machine video (+ all follow-on content you see). 
 

 Web App: 
First Experience. 

 
 

 
 
Okay. Let’s now go wild.  
 
Let’s go all the way up to a 1 ← 10 machine and put in 273 dots in a 1 ← 10 machine! 
 
What is the secret 1 ← 10 code for the number 273?  

 
 
I thought my way through this by asking a series of questions.  

Will there be any explosions? Are there any groups of ten that will explode? Certainly!  
 

How many explosions will there be initially? Twenty-seven. 
 
Any dots left behind? Yes. Three. 

 

https://gdaymath.com/lessons/explodingdots/1-4-1-leftarrow-10-machine/
https://www.explodingdots.org/island/I1
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Okay. So, there are twenty-seven explosions, each making one dot one place to the left, leaving three 
dots behind. 

 
 

Any more explosions? Yes. Two more. 
 

Any dots left behind? Seven left behind. 
 

 
 

 The 1 10←  code for two hundred seventy-three is…273. Whoa! 
 
 
Something curious is going on! 
 
What is the natural big question to now ask?  
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WILD EXPLORATIONS 
 
Here are some “big question” investigations you might want to explore, or just think about before 
moving on. All will become clear as the story unfolds in further chapters, but it could be fun to mull on 
these ideas now.  
 
Wild Exploration 1: Can you indeed figure out what these machines are actually doing?  
 
Why is the code for two hundred and seventy-three in a 1 ← 10 machine, “273”? Are all the codes for 
numbers in a 1 ← 10 sure to be identical to how we normally write numbers?  
 
If you can answer that question, can you then also make sense of all the codes for a 1 ← 2 machine?  
What does the code 1101 for the number thirteen mean? 
 
[All this will be explained in the next section.] 
 
Wild Exploration 2: Put nineteen dots into the rightmost box of a 1 ← 2 machine and explode pairs of 
dots in a haphazard manner: explode a few pairs in the right most box, and then some in the second 
box, and then a few more in the rightmost box, and then some in the second box again, and so on.  
 
Do it again, this time changing the order in which you do explosions. And then again! 
 
Does the same final code of 10011 appear each, and every time? 
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EXPLAINING THE MACHINES 
 

Videos:  
Introductory video. 
Explaining the machines video (+ all follow-on content you see). 
 

 Web App: 
Second Experience. 

 

 
 
 
All right. It’s time to explain what the machines are really doing. (Have you already figured it all out?) 
 
Let’s go back to the 1 ← 2 machine and first make sense of that curious device. Recall that it follows the 
rule: 
 

Whenever there are two dots in any one box they “explode,” that is, disappear, and are replaced by 
one dot, one place to their left. 

 
And this machine is set up so that dots in the rightmost box are always worth one. 
 

 
 
  

https://gdaymath.com/lessons/explodingdots/2-1-welcome/
https://gdaymath.com/lessons/explodingdots/2-2-explaining-1-leftarrow-2-machine/
https://www.explodingdots.org/island/I2
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With an explosion, two dots in the rightmost box are equivalent to one dot in the next box to the left. 
And since each dot in the rightmost box is worth 1, each dot one place over must be worth two 1’s, that 
is, 2. 
 

 
 
And two dots in this second box is equivalent to one dot, one place to the left. Such a dot must be worth 
two 2’s, that is, worth 4. 
 

 
 
And two 4’s makes 8 for the value of a dot the next box over.  
 

 
 
And two 8’s make 16, and two 16’s make 32, and two 32’s make 64, and so on.    
 
We saw earlier that the code for thirteen in a 1 ← 2 machine is 1101. Now we can see that this is 
absolutely correct: one 8 and one 4 and no 2’s and one 1 does indeed make thirteen.  

 
People call the 1 ← 2 codes for numbers the binary representations of numbers (with the prefix bi- 
meaning “two”). They are also called base two representations.  One only ever uses the two symbols 0 
and 1 when writing numbers in binary.  
 

Comment: Computers are built on electrical switches that are either on, or off. So, it is very 
natural in computer science to encode all arithmetic in a code that uses only two symbols: say 1 
for “on” and 0 for “off.” Thus, base two, binary, is the right base to use in computer science.  

 
 



 

18 
 

Now to the next machine. 
 
In a 1 ← 3 machine, three dots in any one box are equivalent to one dot, one place to the left. (And each 
dot in the rightmost box is again worth 1.)  We get the dot values in this machine by noting that three 
1’s is 3, and three 3’s is 9, and three 9’s is 27, and so on.  
 

 
 
At one point, we said that the 1 ← 3 code for thirteen is 111.  And we see that this is correct: one 9 and 
one 3 and one 1 does indeed make thirteen.  

 
The 1 ← 3 machine codes for numbers are called ternary or base three representations of numbers. 
Only the three symbols 0, 1, and 2 are ever needed to represent numbers in this system.   
 

Comment: Scientists are discussing the idea of building optic computers based on polarized 
light: either light travels in one plane, or in a perpendicular plane, or there is no light. For these 
computers, base three arithmetic would be the appropriate notational system to use.  

 
We Speak 1 10← Machine 
 
And finally, for a 1 ← 10 machine, we see that ten ones makes 10, ten tens makes 100, ten one-
hundreds makes 1000, and so on. A 1 ← 10 has ones, tens, hundreds, thousands, and so on, as dot 
values.  

 
 
We saw that the code for the number 273 in a 1 ← 10 machine is 273, and this is absolutely correct: 273 
is two hundreds, seven tens, and three ones. 
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In fact, we even speak the language of a 1 ← 10 machine. When we write 273 in words, we write 

 

 
 
We literally say, in English at least, two HUNDREDS and seven TENS (that “ty” is short for “ten”) and 
three.  
 
So, through this untrue story of dots and boxes we have discovered place-value and number bases: base 
two, base three, base ten, and so on. And society has decided to speak the language of base ten 
machine.  
 

Question: Why do you think we humans have a predilection for the 1 ← 10 machine? Why do we 
like the number ten for counting? 

 
One answer could be because of our human physiology: we are born with ten digits on our hands. Many 
historians do believe this could well be the reason why we humans have favored base ten. 
 

Question: There are some cultures on this planet that have used base twenty. Why might they 
have chosen that number do you think? 

 
In fact, there are vestiges of base twenty thinking in western European culture of today. For example, in 
French, the number 87 is spoken and written as quatre-vingt-sept, which translates, word for word, as 
“four twenties seven.” In the U.S. the famous Gettysburg address begins: “Four score and seven years 
ago.”  That’s four-twenties and seven years ago. 
 

Question: I happen to know that Martians have four fingers on each of two hands. What base do 
you think they might use in their society? (Probably base eight?) 

 
All right. The point of this lesson has been made. We have discovered base-ten place value for writing 
numbers and seen their context in the whole story of place value. We humans happen to like base ten in 
particular, because it matches is the number of fingers most of us seem to have.  
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Here are some practice questions you might or might not want to try.  
 

Practice 13: What number has 1 ← 2 machine code 100101? 
 
Practice 14: What is the 1 ← 2 machine code for the number two hundred? 
 
Practice 15: In a 1 ← 3 machine, three dots in any one box are equivalent to one dot one place to the 
left. (And each dot in the rightmost box is again worth 1.)  We get the dot values in this machine by 
noting that three 1’s is 3, and three 3’s is 9, and three 9’s is 27, and so on.  

 
 

a) What is the value of a dot in the next box to the left after the ones shown? 
 

b) The 1 ← 3 machine code for fifteen is 120. We see that this is correct as one 9 and two 
3’s does indeed make fifteen.  

 
Could we also say that the 1 ← 3 code for fifteen is 0120?  That is, is it okay to put zeros 
in the front of these codes? What about zeros at the ends of codes? Are they optional?  
Is it okay to leave off the last zero of the code 120 for fifteen and just write instead 12?  

 
c) What number has 1 ← 3 machine code 21002? 

 
d) What is the 1 ← 3 machine code for two hundred? 

 
Practice 16:  

a) In the 1 ← 4 system four dots in any one box are equivalent to one dot, one place to their 
left. What is the value of a dot in each box? 

 
b) What is the 1 ← 4 machine code for twenty-nine? 

 
c) What number has 132 as its 1 ← 4 machine code? 
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Practice 17: I happen to know that Venutians have six fingers on each of two hands. What base do 
you think they might use in their society? 

 
 

WILD EXPLORATIONS 
Here are some “big question” investigations you might want to explore, or just think about before 
moving on. Enjoy!  
 
Wild Exploration 1:  THE MIND-READING TRICK 
Can you explain it now by looking at 1 2← machine codes? 
 
Wild Exploration 2:  CAN MACHINES GO THE OTHER WAY? 
Jay decides to play with a machine that follows a 1 ← 1 rule. He puts one dot into the right-most box. 
What happens? Do assume there are infinitely many boxes to the left. 

 
 
Suggi plays with a machine following the rule 2 ← 1. She puts one dot into the right-most box. What 
happens for her? 
 
Do you think these machines are interesting? Is there much to study about them? 
 
Wild Exploration 3: CAN WE PLAY WITH WEIRD MACHINES? 
Poindexter decides to play with a machine that follows the rule 2 ← 3. 
 

a) Describe what happens when there are three dots in a box. 
b) Work out the 2 ← 3 machine codes for the numbers 1 up to 30. Any patterns? 
c) The code for ten in this machine turns out to be 2101. Look at your code for twenty. Can you 

see it as the answer to “ten plus ten”? Does your code for thirty look like the answer to “ten 
plus ten plus ten”? 
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2. BASE TEN ARITHMETIC 
 

Videos:  
Introductory video. 
Addition video (+ all follow-on content you see). 
 

 Web App: 
Third Experience. 

 

 
 
Society loves working in base ten. So, let’s stay with a 1 ← 10 machine for a while and make good sense 
of all the arithmetic we typically learn in school.  
 
We have just seen how to write numbers. What is the first mathematical thing students learn to do with 
numbers, once they know how to write them? It’s usually addition.  
 
Here’s an addition problem.  
 

Compute 251 + 124.   
 
Such a problem is usually set up this way.  

 
This addition problem is fine to compute: 2 + 1 is 3, 5 + 2 is 7, and 1 + 4 is 5. The answer 375 appears. 
 

https://gdaymath.com/lessons/explodingdots/3-1-welcome/
https://gdaymath.com/lessons/explodingdots/3-2-addition/
https://www.explodingdots.org/island/I3
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But did you notice something curious just then?  
 
Yes. I worked from left to right just as I was taught to read. I guess this is opposite to what most people 
are taught to do in a mathematics class: go right to left.  
 
But does it matter? Do you get the same answer 375 if you go right to left instead? Yes! 
 
So why then are we taught to work right to left in mathematics classes? 
 
Many people suggest that the problem we just did is “too nice.” We should do a more awkward addition 
problem, one like 358 + 287. 

 
Okay. Let’s do it!  
If we go from left to right again we get 3 + 2 is 5; 5 + 8 is 13; and 8 + 7 is 15. The answer “five-
hundred thirteen-ty fifteen” appears. (Remember, “ty” is short for ten.)  
 

 
 
And this answer is absolutely, mathematically correct! You can see it is correct in a 1 ← 10 machine.  
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Here are 358 and 287. 

 
 
Adding 3 hundreds and 2 hundreds really does give 5 hundreds. 
 
Adding 5 tens and 8 tens really does give 13 tens. 
 
Adding 8 ones and 7 ones really does give 15 ones.  

 
“Five-hundred thirteen-ty fifteen” is absolutely correct as an answer – and I even said it correctly. We 
really do have 5 hundreds, 13 tens, and 15 ones. There is nothing mathematically wrong with this 
answer. It just sounds weird. Society prefers us not to say numbers this way. 
 
So, the question is now:  

 
Can we fix up this answer for society’s sake – not mathematics’ sake – just for society’s sake?  

 
The answer is yes! We can do some explosions. (This is a 1 ← 10 machine, after all.)  
 
Which do you want to explode first: the 13 or the 15? 
 
Just to be unexpected, let’s explode the 15 first. (Most people still want to go right to left!)  

Ten dots in the middle box explode to be replaced by one dot, one place to the left. 
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The answer “six hundred three-ty fifteen” now appears. This is still a lovely, mathematically correct 
answer. But society at large might not agree. Let’s do another explosion: ten dots in the rightmost box. 
 
 

 
 

Now we see the answer “six hundred four-ty five,” which is one that society understands. (Although, in 
English, “four-ty” is usually spelled forty.) 
 
 

Video:  
Traditional Addition video (+ all follow-on content you see). 

 Web App: 
Third Experience. 

 
So how does this dots-and-boxes approach to addition compare to the standard algorithm most people 
know? 

 
Let’s go back to the example 358 + 287. Most people are surprised (maybe even perturbed) by the 
straightforward left-to-right answer 5 | 13 | 15. 
 

 
 
This is because the traditional algorithm has us work from right to left, looking at 8 + 7 first. 
 

https://gdaymath.com/lessons/explodingdots/3-3-optional-traditional-algorithm/
https://www.explodingdots.org/island/I3
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But, in the algorithm we don’t write down the answer 15. Instead, we explode ten dots right away and 
write on paper a 5 in the answer line together with a small 1 tacked on to the middle column. People call 
this carrying the one and it – correctly – corresponds to adding an extra dot in the tens position. 
 

 
 
Now we attend to the middle boxes. Adding gives 14 dots in the tens box (5 + 8 gives thirteen dots, plus 
the extra dot from the previous explosion).  
 
And we perform another explosion.  

 
On paper, one writes “4” in the tens position of the answer line, with another little “1” placed in the 
next column over. This matches the idea of the dots-and-boxes picture precisely. 
 
And now we finish the problem by adding the dots in the hundreds position. 
 

 
 
So, the traditional algorithm works right to left and does explosions (“carries”) as one goes along. On 
paper, it is swift and compact, and this might be why it has been the favored way of doing long addition 
for centuries.  
 
The Exploding Dots approach works left to right, just as we are taught to read in English, and leaves all 
the explosions to the end. It is easy to understand and kind of fun. 
 
Both approaches, of course, are good and correct. It is just a matter of taste and personal style which 
one you choose to do. (And feel free to come up with your own new, and correct, approach too!)  
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Here are some practice problems you might or might not want to try. 

 
Practice 18: Write down the answers to the following addition problems working left to right, not 
worrying about what society thinks! Then, do some explosions to translate each answer into 
something society understands.  
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MULTIPLICATION  
 

Video:  
Multiplication video (+ all follow-on content you see). 

 Web App: 
Third Experience. 

 

 
 
 
Okay. Addition. What do students usually learn to do next in school? Subtraction. 
 
But that is too hard. Let’s do multiplication instead! 
 

ON THE SPOT CHALLENGE: You’ve got less than three seconds to write down an absolutely, 
correct speedy answer to this multiplication problem. Without regard to society’s opinions, 
what’s a good answer? 

 
 
Can you see that 6 | 18 | 12 | 3 | 21, that is, “six ten thousand, eighteen thousand, twelve hundred and 
three-ty twenty-one,” is correct and does the speedy trick? 
 
Here’s what’s going on.   
 
Let’s start with a picture of 26417 in a 1 ← 10 machine. (Is it okay if I just write numbers rather than 
draw dots?)  
 

 
 
We’re being asked to triple this number.   

https://gdaymath.com/lessons/explodingdots/3-4-multiplication/
https://www.explodingdots.org/island/I3
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Right now, we have 2 ten-thousands. If we triple this, we’d have 6 ten-thousands.  
 
Right now, we have 6 thousands, and tripling would make this 18 thousands. 
 
Also, 4 hundreds becomes 12 hundreds; 1 ten becomes 3 tens; and 7 ones becomes 21 ones.  
 

 
 
We see the answer “sixty eighteen thousand, twelve hundred and three-ty twenty-one.” Absolutely 
solid and mathematically correct! 
 
Now, how can we fix up this answer for society? Do some explosions of course! 
 
Which explosion do you want to do first? Umm, I’ll explode the 12 first. It gives  
 

6 | 19 | 2 | 3 | 21 
 

Question: If you keep going with explosions, can you see the societally acceptable answer 79251 
appear?   

 
 

Practice 19:  If you feel like it, compute each of the following. 
 

a) 26417 × 4  
 
b) 26417 × 5 
 
c) 26417 × 9 

 
d) Compute 26417 × 10 too and explain why the answer has to be 264170.  

(This answer looks like the original number with the digit zero tacked on to its end.) 
 

e) Care to compute 26417 × 11 and 26417 × 12 too?  
(The answer could be, “No! I do not care to do this!) 
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ON MULTIPLYING BY TEN 

Why must the answer to 26417 ×  10 look like the original number with a zero tacked on to its end? 
 
I remember being taught this rule in school: to multiply by ten tack on a zero. For example,  

37 ×  10 = 370 
98989 ×  10 = 989890 
100000 ×  10 = 1000000  

and so on. 
 
This observation makes perfect sense in the dots-and-boxes thinking.  
 
Here’s the number 26417 again in a 1 ← 10 machine. 
 

 
Here’s 26417 ×  10. 
 

 
 
Now let’s perform the explosions, one at a time. (We’ll need an extra box to the left.) 
 
We have that 2 groups of ten explode to give 2 dots one place to the left, and 6 groups of ten explode to 
give 6 dots one place to the left, and 4 groups of ten explode to give 4 dots one place to the left, and so 
on. The digits we work with stay the same. In fact, the net effect of what we see is all digits shifting one 
place to the left to leave zero dots in the ones place.    
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Indeed, it looks like we just tacked on a zero to the right end of 26417. But really, we performed a 
whole lot of explosions to make a zero appear at the end.   
 
These next two practice problems are worth dwelling on. Can you explain them with clarity? 
 
 

Practice 20: What must be the answer to 476 ×  10? To 476 ×  100?  
 
Practice 21: What must be the answer to 9190 ÷ 10? To 3310000 ÷ 100?   
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(OPTIONAL) TRADITIONAL LONG MULTIPLICATION 
 
Is it possible to do, say, 37 ×  23, with dots and boxes? 
 
Here we are being asked to multiply three tens by 23 and seven ones by 23. If you are good with your 
multiples of 23, this must give 3 ×  23 = 69 tens and 7 ×  23 = 161 ones.  The answer is thus 69|161.  
With explosions, this becomes 851.     
 
But this approach is hard! It requires you to know multiples of 23.  
 

Thinking Exercise: Suzzy thought about 37 ×  23 for a little while, she eventually drew the 
following diagram.  
 

 
 
She then said that 37 ×  23 = 6|23|21 = 8|3|21 = 851. 
 

a) Can you work out what Suzzy was thinking? If not, perhaps look at this next example she 
did.   

 

 
 
Does this look anything like the long multiplication you were taught to do in grade 
school? 
Can you make sense of if? 
 

b) What diagram do you think Suzzy might draw for 236 ×  34 (and what answer will she 
get from it)? 
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WILD EXPLORATIONS 
Here are some “big question” investigations you might want to explore, or just think about before 
moving on. Have fun!  
 
Wild Exploration 1:  THERE IS NOTHING SPECIAL ABOUT BASE TEN FOR ADDITION. 
Here is an addition problem in a 1 ← 5 machine. (That is, it is a problem in base five.)  
This is not a 1 ← 10 machine addition.  

 
 

a) What is the 1 ← 5 machine answer? 
b) What number has code 20413 in a 1 ← 5 machine?  

What number has code 13244 in a 1 ← 5 machine?  
What is the sum of those two numbers and what is the code for that sum in a 1 ← 5 
machine?  
 

[Here are the answers so that you can check your clever thinking.  
The sum, as a 1 ← 5 machine problem, is 

 
20413 13244 3 | 3 | 6 | 5 | 7 3 | 4 |1 | 5 | 7 3 | 4 | 2 | 0 | 7 3 | 4 | 2 |1 | 2 34212+ = = = = = . 

In a 1 ← 5 machine, 20413 is two 625’s, four 25’s, one 5, and three 1’s, and so is the number 1358 in 
base ten; 13244 is the number 1074 in base ten; and 34212 is the number 2432 in base ten.  We have 
just worked out 1358 + 1074 = 2432.]  
 
Wild Exploration 2: THERE IS NOTHING SPECIAL ABOUT BASE TEN FOR MULTIPLICTION. 
Let’s work with a 1 ← 3 machine. 
 

a) Find 111 ×  3 as a base three problem. Also, what are 1202 ×  3 and 2002 ×  3?   
Can you explain what you notice? 

Comment: For base three, we could write “10” here instead of “3”.   
 
Let’s now work with a 1 ← 4 machine. 
 

b) What is 133 ×  4 as a base four problem? What is 2011 ×  4? What is 22 ×  4? 
Can you explain what you notice? 

Comment: For base four, we could write “10” here instead of “4”.   
 

c) In general, if we are working with a 1 ← 𝒃𝒃 machine, can you explain why multiplying a 
number in base 𝒃𝒃 by 𝒃𝒃 returns the original number with a zero tacked on to its right? 
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SUBTRACTION 
 

Videos:  
Introductory video. 
Antidots video. 
Subtraction video (+ all follow-on content you see). 

 Web App: 
Fourth Experience. 

 
 

 
 
So far, we’ve made sense of addition and multiplication. But we skipped over subtraction. Why? 
Because I don’t believe in subtraction! To me, subtraction is just the addition of the opposite.  

My disbelief in subtraction comes from another story that isn’t true. Briefly, it goes as follows. 

As a young child, I used to regularly play in a sandbox. And there I discovered the positive counting 
numbers as piles of sand: one pile, two piles, and so on. And I also discovered the addition of 
positive numbers simply by lining up piles. For example, I saw that two plus three equals five simply 
by lining up piles like this.   

 

I had hours of fun counting and lining up piles to explore addition.  

  

https://gdaymath.com/lessons/explodingdots/4-1-welcome/
https://gdaymath.com/lessons/explodingdots/4-2-piles-holes-dots-antidots/
https://gdaymath.com/lessons/explodingdots/4-3-subtraction/
https://www.explodingdots.org/island/I4
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But then one day I had an astounding flash of insight! Instead of making piles of sand, I realized I 
could also make holes. And I saw right away that a hole is the opposite of a pile: place a pile and 
a hole together and they cancel each other out. Whoa! 

 

Later in school I was taught to call a hole “−1”, and two holes “−2,” and so on, and was told to do 
this thing called “subtraction.” But I never really believed in subtraction. My colleagues would read 
5− 2, say, as, “five take away two,” but I was thinking of five piles and the addition of two holes. 
A picture shows that the answer is three piles. 

 

Yes. This gives the same answer as my peers, of course: the two holes “took away” two of the piles. 
But I had an advantage. For example, my colleagues would say that 7 − 10 has no answer. I saw 
that it did. 

7 − 10 = seven piles and ten holes  

= three holes 

= −3 

Subtraction is just the addition of the opposite. 

(By the way, I will happily write 7 –  10 as “7 + −10.” This makes the thinking more obvious.)  

 

We’ll go through the story and arithmetic of negative numbers in a later chapter, but maybe this little 
introduction is enough for us to keep playing with the Exploding Dots fun.  

  



 

36 
 

But there’s a problem. In our 1 ← 10 machine we’ve been working with dots, which I’ve been drawing as 
solid dots. (And a dot is like a “pile” for a positive number.) 

 

Now we need the notion of the opposite of dot. Umm… 

What should I call the opposite of a dot?  

What do I draw for the opposite of a dot? 

 

Let’s draw an open circle for the opposite of a dot and call it an “antidot” (or “tod”). 

 

Like matter and antimatter (or a pile and hole), which each annihilate one another when brought 
together, a dot and an antidot should also annihilate – POOF! – when brought together, to leave nothing 
behind.  

 

We can conduct basic arithmetic with dots and antidots, just like we did with piles and holes.  

 

 

Now we’re ready to do subtraction in a 1 10← machine. 
 
Consider this subtraction problem.  

 
To me, this is 536 plus the opposite of 123. 
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The first number, 536, looks like this in a 1 ← 10 machine: five dots, three dots, six dots.  
 

 
 
To this we are adding the opposite of 123. That is, we’re adding one anti-hundred, two anti-tens, and 
three anti-ones.  

 
 
And now there are a lot of annihilations: POOF!;  POOF POOF!;  POOF POOF POOF! 
 

 
We see the answer 413 appear.  
 
And notice, we get this answer as though we just work left to right and say 

 
5 take away 1 is 4,  
3 take away 2 is 1,  

and   
6 take away 3 is 3.  

 
Yes! Left to right again!  
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All right. That example was too nice. How about 512 – 347?  
 

 
Going from left to right, we get  
 

5 take away 3 is 2,  
1 take away 4 is –3,  

and  
2 take away 7 is –5.  

 
The answer is two-hundred negative-three-ty negative-five.  

 

 
 
And this answer is absolutely, mathematically correct! The picture shows it is.  
 
Here’s five hundreds, one ten and two ones together with three anti-hundreds, four anti-tens, and 
seven anti-ones.   

 
 
And after lots of annihilations we are left with two actual hundreds, three anti-tens, and five anti-ones. 

 

 
The answer really is two-hundred negative-three-ty negative-five! 

 
But, of course, saying the answer to our subtraction problem this way seems mighty weird to society.  
 

Can we fix up this mathematically correct answer for society’s sake? 
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After some time you might think to do something wild: unexplode dots! Any dot in a box to the left 
must have come from ten dots in the box just to its right, so we can “unexplode” it to make ten dots.  
 
Okay. Let’s unexplode one of the two dots we have in the leftmost box. Doing so gives this picture. 
 

 
After annihilations, we see we now have the answer one-hundred seventy negative-five. Beautiful! 
 

 
Let’s unexplode again.  

 
 
And with some more annihilations we see an answer society can understand: one-hundred sixty-five. 
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(OPTIONAL) THE TRADITIONAL SUBTRACTION ALGORITHM 
 

How does this dots-and-boxes approach compare with the standard algorithm?   
 
Consider again 512 – 347.  

 
 
The standard algorithm has you start at the right to first look at “2 take away 7,” which you can’t do. 
(Well you can do it, it is –5, but you are not to write that for this algorithm.)  
 
So, what do you do?  
 
You “borrow one.” That is, you take a dot from the tens column and unexplode it to make ten ones. That 
leaves zero dots in the tens column.  We should write ten ones to go with the two in the ones column.   
 

 
 
But we are a bit clever here and just write 12 rather than 10 + 2. (That is, we put a 1 in front of the 2 to 
make it look like twelve.)  

 
Then we say, “twelve take seven is five,” and write that answer.  
 

 
The rightmost column is complete. Shift now to the middle column.  
 
We see “zero take away four,” which can’t be done. So, perform another unexplosion, that is, another 
“borrow,” to see 10 – 4 in that column. We write the answer 6. 
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We then move to the last remaining column where we have 4 – 3, which is 1. 
 

 
Phew! 
 
Again. All correct approaches to mathematics are correct, and it is just a matter of style as to which 
approach you like best for subtraction. The traditional algorithm has you work from right to left and do 
all the unexplosions as you go along. The dots-and-boxes approach has you “just do it!” and conduct all 
the unexplosions at the end.  Both methods are fine and correct. 
 
Here’s a practice schedule to try if you like.  
 

Practice 22:  
Compute each of the following two ways: the dots-and-boxes way (and fixing the answer for society 
to read) and then with the traditional algorithm. The answers should be the same. 
 

 
 
Thinking questions along the way:  
As you fix up your answers for society, does it seem easier to unexplode from left to right, or from 
right to left? 
 
Do you think you could become just as speedy the dots-and-boxes way as you currently are with the 
traditional approach? 
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WILD EXPLORATIONS 
Here are some “big question” investigations you might want to explore, or just think about before 
moving on. Have fun!  
 
Wild Exploration 1:  IS THERE ANOTHER WAY TO INTERPRET DOTS-AND-BOXES ANSWERS? 
When Sunil saw,  

 
he wrote on his paper the following lines: 

 
He then said that the answer has to be 165. 
 

a) Can you explain what he is seeing and thinking? 
 

b) What would Sunil likely write on the page for 7109 –  3384?  
 
 
Wild Exploration 2: WHAT ABOUT NEGATIVE ANSWERS? 
How might you handle and interpret this subtraction problem? 
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DIVISION 
 

Videos:  
Introductory video. 
Division video (+ all follow-on content you see). 

 Web App: 
Fifth Experience. 

 

 
 
Addition, subtraction, multiplication. Now it is time for division. 
 
Division is linked with multiplication. In fact, many people think of division as the reverse of 
multiplication. So, let’s revisit multiplication for a moment to then see if we can follow it backwards to 
get to division. We’ll start with a straightforward multiplication problem, say, 1302 3×  (with answer 
3906 ). 
 
Here’s what 1302  looks like in a 1 10←  machine.  (I’ve colored the dots for fun.) 
 

 
To triple this quantity, we just need to replace each dot in the picture with three dots. We see the 
answer 3906 .  
 

 

https://gdaymath.com/lessons/explodingdots/5-1-welcome/
https://gdaymath.com/lessons/explodingdots/5-2-division/
https://www.explodingdots.org/island/I5
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Now suppose I gave you the second picture first and said “Please use it to divide 3906  by three.” Could 
you use the picture to see triples of dots that must have come from single dots? Yes! Look at the picture 
this way. 

 
 
We see the picture as the result of tripling one dot at the thousands level, tripling three dots at the 
hundreds level, and tripling two dots at the ones level. That is, we see 3906  as the number 1302  
tripled. 
 
We have just deduced, from the picture, that 3906 3 1302÷ = !  
 
 
So, to divide a number by three, all we need to do is to look for groups of three in the picture of the 
number. Each group of three corresponds to a dot that must have been tripled.  We can just read off the 
answer to the division problem then by looking at the groups we find! 
 
Of course, we can do the same for any single-digit division problem.  
 
 

Question; Draw a dots and boxes picture of the number 426  and use it to explain why 426 2÷  
equals 213 .   

 
Question: Try doing 402 3÷  with just a dots-and-boxes picture. Do you see that unexplosions 
unlock this problem to reveal the answer 134 ?   

 
 
Division by single-digit numbers is all well and good. What about division by multi-digit numbers? People 
usually call that long division. 
 
Let’s consider the problem 276 12÷ . 
 
Here is a picture of 276  in a 1 10←  machine.  
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And we are looking for groups of twelve in this picture of 276 . Could this picture be the result of a 
different picture whose single dots were each replaced by a group of twelve? 
 
Here’s what twelve looks like.  
 

 
 
Actually, this is not quite right as there would be an explosion in our 1 10←  machine. Twelve will look 
like one dot next to two dots. (But we need to always keep in mind that this really is a picture with all 
twelve dots residing in the rightmost box. An explosion caused a dot to spill to the left.)  

 
 

Okay. So we’re looking for groups of 12  in our picture of 276 . Do we see any one-dot-next-to-two-dots 
in the diagram?  
 
Yes. Here’s one. 
 

 
Within each loop of 12  we find, the 12  dots actually reside in the right part of the loop. So we have 
found one group of 12  at the tens level.  

 
 
And there are more groups of twelve.  

 
This shows that our picture of 276  is actually a picture of 23  each of whose dots was replaced by 12 . 
We see 276 23 12= ×  and so 276 12 23÷ = . 
 
Alternatively, we can say in our picture of 276  we’ve identified two groups of 12  at the tens level and 
three 12 s at the ones level, and so there are 23  groups of 12  in 276 .  
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No matter how you wish to interpret matters, the picture reveals all!  
 

 Question: Use a picture to show that 2783 ÷ 23 equals 121. 

 
 

Let’s do another example. Let’s compute 31824 102÷ . 

 
Here’s the picture.   
 

 
 
Now we are looking for groups of one dot–no dots–two dots in our picture of 31824 . (And, remember, 
all 102  dots are physically sitting in the rightmost position of each set we identify.)  
 
We can spot a number of these groups. (I now find drawing loops messy so I am drawing Xs and circles 
and boxes instead. Is that okay? Do you also see how I circled a double group in one hit at the very end?)  

 
 
The answer 312  to 31824 102÷  is now apparent. (The colors show that 31824  is a picture of 312  
with each dot multiplied by 102 . Or, if you prefer, we’ve found 312  groups of 102  in our picture of 
31824 .)   
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REMAINDERS 
 

Video:  
Remainders video (+ all follow-on content you see). 

 Web App: 
Fifth Experience. 

 
 
We saw that 276 ÷ 12 equals 23. 

 
Suppose we tried to compute 277 ÷ 12 instead. What picture would we get? How should we interpret 
the picture? 
 
Well, we’d see the same picture as before except for the appearance of one extra dot, which we fail to 
include in a group of twelve.  

 
This shows that 277 ÷ 12 equals 23 with a remainder of 1.  
 
You might write this as  

277 12 23 1R÷ =  
 
or with some equivalent notation for remainders. (People use different notations for remainders in 
different countries.)  
 
Or you might be a bit more mathematically precise and say that 277 ÷ 12 equals 23 with one more dot 
still to be divided by twelve. 

1277 12 23
12

÷ = +
. 

 
(Some people might prefer to think of that single dot as one-twelfth of a group of twelve. All 
interpretations are good!)  
 
  

https://gdaymath.com/lessons/explodingdots/5-4-remainders/
https://www.explodingdots.org/island/I5
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Here are some practice problems you might like to try ... or not! 
 

Practice 23: Compute 2783 ÷ 23 by the dots-and-boxes approach by hand.  
Practice 24: Compute 3900 ÷ 12. 
Practice 25: Compute 46632 ÷ 201.   
Practice 26: Show that 31533 ÷ 101 equals 312 with a remainder of 21.   
Practice 27: Compute 2789 ÷ 11.  
Practice 28: Compute 4366 ÷ 14. 
Practice 29: Compute 5481 ÷ 131.  
Practice 30: Compute 61230 ÷ 5. 

 
WILD EXPLORATIONS 
Here are some “big question” investigations you might want to explore, or just think about before 
moving on. Have fun!  
 
Wild Exploration 1:  LEFT TO RIGHT? RIGHT TO LEFT? ANY ORDER? 
When asked to compute 2552÷12, Kaleb drew this picture, which he got from identifying groups of 
twelve working right to left.  

 
He said the answer to 2552 ÷ 12 is 121 with a remainder of 1100. 
Mabel, on the other hand, identified groups of twelve from left to right in her diagram for the 
problem. 

 
She concluded that 2552 ÷ 12 is 211 with a remainder of 20.  Both Kaleb and Mabel are 
mathematically correct, but their teacher pointed out that most people would expect an answer with 
smaller remainders: both 1100  and 20  would likely be considered strange remainders for a problem 
about division by twelve. She also showed Kaleb and Mabel the answer to the problem that is printed 
in the textbook. 

2552 12 212 8R÷ =  
How could Kaleb and Mabel each continue work on their diagrams to have this textbook answer 
appear? 
 
Wild Exploration 2:  HOW DOES THE DOTS-AND-BOXES DIVISON COMPARE WITH THE TRADTIONAL 
ALGORITHM? 
You can see the comparison here if you are interested.  
 

 

https://gdaymath.com/lessons/explodingdots/5-6-remainders/
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3. DECIMALS 

Videos:  
Introductory video. 
Decimals video(+ all follow-on content you see). 

 Web App: 
Eighth Experience. 

 

 
 
All our machines, so far, have had boxes going to the left as far as we please. But that seems awfully 
lopsided! Why can’t we have boxes going infinitely far to the right as well?  
 
Mathematicians like symmetry and so let’s follow suit and now make all our machines symmetrical. Let’s 
have boxes going to the left and to the right.  
 
But the challenge now is to figure out what those boxes to the right mean. 
 
DISCOVERING DECIMALS 
 
Still working with a 1 10←  machine let’s see what boxes to the right could mean in that machine.  
 
To keep the left and right boxes visibly distinct, we’ll separate them with a point. (Society calls this point, 
for a 1 10←  machine at least, a decimal point.)  
 

 

https://gdaymath.com/lessons/explodingdots/8-1-welcome/
https://gdaymath.com/lessons/explodingdots/8-2-decimals/
https://www.explodingdots.org/island/I8
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What does it mean to have dots in the right boxes? What are the values of dots in those boxes? 
 
Since this is a 1 10←  machine, we do know that ten dots in any one box explode to make one dot one 
place to the left. So, ten dots in the box just to the right of the decimal point are equivalent to one dot in 
the 1s box.  Each dot in that box must be worth one-tenth. 
 

 
We have our first place-value to the right of the decimal point.  

 
In the same way, ten dots in the next box over are worth one-tenth. And so each dot in that next box 
must be worth one-hundredth. 
 
 

 
We now have two place values to the right of the decimal point.  
 

 
And ten one-thousandths make a hundredth, and ten ten-thousandths make a thousandth, and so on. 
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We see that the boxes to the left of the decimal point represent place values as given by the powers of 
ten, and the boxes to the right of the decimal point represent place values given by the reciprocals of 
the powers of ten. 
 
We have just discovered decimals! 
 

Question: What does the prefix deci mean in English? Would we talk about “decimals” in a 
1 2←  machine, for instance? (And why isn’t December the tenth month of the year? What 
happened in the history of the western calendar?) 

 
When people write 0.3 , for example, in base ten, they mean the value of placing three dots in the first 
box after the decimal point.  
 

 
 

We see that 0.3   equals three tenths: 
30.3

10
= . 

 

Seven dots in the third box after the decimal point is seven thousandths: 
70.007

1000
= . 

 
 
 

 
 

Comment: Some people might leave off the beginning zero and just write 
7.007

1000
= . It’s just a 

matter of personal taste. 
 
 

Practice 31: Some people read 0.6  out loud as “point six” and others read it out loud as “six tenths.” 
Which is more helpful for understanding what the number really is? 
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There is a possible source of confusion with a decimal such as 0.31 . This is technically three tenths and 

one hundredth: 
3 10.31

10 100
= + .  

 

 
 
But some people read 0.31  out loud as “thirty-one hundredths,” which looks like this. 
 

 
Are these the same thing?  
 
Well, yes! With three explosions we see that thirty-one hundredths becomes three tenths and one 
hundredth.  
 

Practice 32: A teacher asked his students to each draw a 1 10←  machine picture of the fraction 
319

1000
. JinJin drew: 

 
Subra drew: 

 
The teacher marked both students as correct. Are each of these solutions indeed valid? Explain your 
thinking. (By the way, the teacher doesn’t mind if students just write numbers instead of drawing 
dots.) 
 
Practice 33: Multiple choice! 

a) The decimal 0.23  equals: (A) 
23
10

    (B) 
23

100
    (C) 

23
1000

   (D) 
23

10000
? 

b) The decimal 0.0409  equals: (A) 
409
100

   (B) 
409

1000
   (C) 

409
10000

   (D) 
409

100000
? 
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Warning! 
The remainder of this section assumes some familiarity with the arithmetic of 

fractions. If you are not quite ready for this yet, fret not! Just skip this rest of this 
section and we’ll talk about fractions another day. 

 
SIMPLE FRACTIONS AS DECIMALS 
 
Some decimals give fractions that simplify further. For example, 
 

 
5 10.5

10 2
= =   

 
and 

 
4 10.04

100 25
= = . 

 
Conversely, if a fraction can be rewritten to have a denominator that is a power of ten, then we can 
easily write it as a decimal. For example,  
 

 
3 6
5 10
=  and so 

3 0.6
5
=   

 
and   

 
13 13 5 65 0.65
20 20 5 100

×
= = =

×
. 

 
 
Here are some more problems. Do whichever ones seem interesting to you. 
 

Practice 34: What fractions (in simplest terms) do the following decimals represent? 
 
               0.05           0.2                0.8                 0.004   
 
Practice 35: Write each of the following fractions as a decimal. 
 

             

2 1 1 1 2
5 25 20 200 2500  

  
Practice 36: MULTIPLE CHOICE! 

a) The decimal 0.050  equals (A) 
50

100
   (B) 

1
20

    (C) 
1

200
   (D) None of these? 

b) The decimal 0.000208  equals (A) 
52
250

   (B) 
52

2500
   (C) 

52
25000

   (D) 
52

250000
?  
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Practice 37: Write each of the following fractions as decimals. 
 

7 16 301 17 3
20 25 500 50 4

 

 
 
Practice 38: CHALLENGE 
 

a) What fraction does the decimal 2.3  represent?  
b) What fraction does 17.04  represent? 
c) What fraction does 1003.1003  represent? 

 
 
Practice 39: Let’s explore the question: Do 0.19   and 0.190   represent the same number or different 
numbers? 
 
Here are two dots and boxes pictures for the decimal 0.19: 
 

 
 
Here are two dots and boxes picture for the decimal 0.190 
 

 
 

a) Explain how one “unexplosion” establishes that the first picture of 0.19  is equivalent to the 
second picture of 0.19 . 

b) Explain how several unexplosions establishes that the first picture of 0.190 is equivalent to 
the second picture of 0.190 . 

c) Explain how explosions and unexplosions in fact establish that all four pictures are equivalent 
to each other. 

d) In conclusion then: Does 0.190 represent the same number as 0.19 ? 
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Following on from question 39 ... To a mathematician, the expressions 0.19  and 0.190  represent 
exactly the same numeric quantity. But you may have noticed in science class that scientists will often 
write down what seems likes unnecessary zeros when recording measurements. This is because 
scientists want to impart more information to the reader than just a numeric value.  
 
For example, suppose a botanist measures the length of a stalk. By writing the measurement as 0.190
meters in her paper, the scientist is saying to the reader that she measured the length of the stalk to the 
nearest one thousandth of a meter and that she got 1 tenth, 9  hundredths, and 0  thousandths of a 
meter. Thus we are being told that the true length of the stalk is somewhere in the range of 0.1895  and 
0.1905  meters.   
 
If she wrote in her paper, instead, just 0.19  meters, then we would have to assume she measured the 
length of the stalk only to the nearest hundredth of a meter and so its true length lies somewhere 
between 0.185  and 0.195  meters.   
 
 
MIXED NUMBERS AS DECIMALS 
 

How does 
312
4

, for example, appear as a decimal? 

 

Well, 
3 312 12
4 4
= +  and we can certainly write the fractional part as a decimal. (The non-fractional part 

is already in the 1 10←  machine format!) We have 
 

3 7512 12
4 100
= +  

and so we see  

    
312 12.75
4
= . 

 
 

Practice 40: Write each of the following numbers in decimal notation, if you like. 
 

3 1 1 3 78 9 1315 7 13 106
10 5 2 20 25 4 40
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ADDING AND SUBTRACTING DECIMALS 
 

Video:  
Adding and Subtracting Decimals video (+ all follow-on content you see). 

 Web App: 
Eighth Experience. 

 

 
 
 
Performing addition and subtraction with decimals in a 1 10←  machine is no different from performing 
addition and subtraction in a 1 10←  machine without decimals.  
 
For example, here is a picture of 22.37 5.841+ .  

 

 
 
We see the answer 2 | 7 . 11 |11 |1. Just add left to right and don’t worry about explosions! 

 

 
 
With explosions we obtain an answer that society understand. We get 28.211 . (Check this!) 
 

https://gdaymath.com/lessons/explodingdots/8-3-adding-subtracting-decimals/
https://www.explodingdots.org/island/I8
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And here is 10.23 4.57− . 
 

 
 
We see the answer, after some annihilations, as  1 | 4 . 3 | 4− − −  . (Do you see this?) 
 

 
 
Now with some unexplosions, we can fix up this answer for society to read. We get10.23 4.57 5.66− = . 
(Check that you follow this.)  
 

 
 
 
Here are some practice questions you might, or might not, want to do. 
 

Practice 41:  
a) What is 0.05 0.006+ ?  
b) What is 0.05 0.006− ?  
 

 
Practice 42:  
Agatha says that computing 0.0348 0.0057+  is essentially the same work as computing 348 57+  in 
whole numbers. Do you agree? 
 
Percy says that computing 0.0852 0.037+  is essentially the same work as computing 852 37+  in 
whole numbers. Do you agree? 
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MULTIPLYING AND DIVIDING DECIMALS 
 

Video:  
Multiplying and Dividing Decimals video (+ all follow-on content you see). 

 Web App: 
Eighth Experience. 

 
 
Even though the addition and subtraction of decimals is straightforward in a 1 10←  machine, 
performing multiplication and division on them can be awkward. The trouble is that the 1 10←  
machine is based on whole dots, not parts of dots, and so it is tricky to make easy sense of pictures.  But 
there are ways to play with dots-and-boxes nonetheless. 
 
MULTIPLICATION 
 
We can certainly do some basic multiplication. For example, a picture of dots and boxes shows that  
 
 2.615 7×   
 
equals 14. 42 | 7 | 35 .  
 

 
 
With explosions, this becomes 18.305 . (Check this!)    
 
We can also explain a rule that students are taught to memorize:  
 

If you multiply a decimal by 10 , just shift the decimal point one place to the right. 
 
For example, 31.42 10×  gives the answer 30 |10 . 40 | 20 . With explosions, this becomes 314.20  and 
the answer looks as though we just shifted the decimal point. (Most people leave off the final zero.)  
 

 
 
By the way, if you multiply a number a little larger than 31 by ten, you should get an answer a little 
larger than 310 . Memorizing the direction of travel of a decimal point is unnecessary. 
 
  

Practice 43: Explain why multiplying a decimal by 100  has the same effect as shifting the decimal 
point two places? (Do you need to memorize the direction of the shift?) 

https://gdaymath.com/lessons/explodingdots/8-4-multiplying-dividing-decimals/
https://www.explodingdots.org/island/I8
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We can also multiply decimals by decimals, but now the work is getting less fun.  

 
My advice, is to convert decimals as fractions, and do the same multiplication and division as one does 
in a 1 10←  machine. For example, to compute 2.15 0.3× , think of this as 
 

 
215 3
100 10

× . 

 

This would be 
215 3 6 | 3 |15 645 0.646
1000 100 1000

×
= = = . 

 
In the same way: 
 

 
2 4 80.2 0.4 0.08

10 10 100
× = × = =   

and 

 
5 6 30 30.05 0.006 0.0003

100 1000 100000 10000
× = × = = =   

 
 

Practice 44: Compute 0.04 0.5×  and compute 1000 0.0385× .  
 
 
DIVISION 
 
Consider 0.08 0.005÷ .  
 
Since a fraction is a number that is an answer to a division problem we can think of 0.08 0.005÷  as the 
“fraction”  
 

 
0.08

0.005
. 

 
(Since we’ve learnt not to care about societal conventions, why fuss about having whole numbers for 
the numerators and denominators of fractions?)  
 
To make this fraction look friendlier, let’s multiply the top and bottom by factors of ten. 
 

 
0.08 10 10 10 80

0.005 10 10 10 5
× × ×

=
× × ×

  

 

The division problem 
80
5

 is much friendlier. It has the answer 16 . (Use a 1 10←  machine now to 

compute it if you like!)  
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Example: Examine 
8.5
100

. 

 

Let’s rewrite this as 
8.5 10 85
100 10 1000

×
=

×
 and see the answer 0.085 .   

 
 
Example: Examine 1.51 0.07÷ . 
 

I see this as the fraction 
1.51
0.07

, which is  

 

 
1.51 10 10 151
0.07 10 10 7

× ×
=

× ×
. 

 

Ordinary division gives me  
421
7

.  If the person asked me to give the answer as a decimal, then I would 

have to convert the fraction 
4
7

 into a decimal too. And that is possible. The next section explains how! 

 
Practice 45:  

a) Explain why the answer to 0.9 10÷  must be 0.09 .  
b) Explain why the answer to 2.34 1000÷  must be 0.00234 . 
c) Explain why the answer to 40.04 0.01×  must be .4004 .  

  

Practice 46: Compute 
0.75
25

. 

 
Practice 47: Let’s put it all together. Here are some unpleasant computations. Do you want to try 
evaluating them? 

 
a) ( )0.3 5.37 2.07× −   

 

b) 
( )0.1 1.01 0.1

0.11 0.09
+ −

+
 

 

c) 
( )( )0.002 0.2 2.02 2.2 0.22

2.22 0.22
+ × −

−
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CONVERTING FRACTIONS INTO DECIMALS 
 

Video:  
Converting Fractions to Decimals video (+ all follow-on content you see). 

 Web App: 
Eighth Experience. 

A fraction is a number that is an answer to a division problem. For example, the fraction 
1
8

 is the result 

of dividing 1 by 8 .  And we can compute 1 8÷ in a 1 10←  machine by making use of decimals. The 
method is exactly the same as for division without decimals.   
 
For1 8÷ we seek groups of eight in the following picture. 
 

 
 
None are to be found right away, so let’s unexplode. 
 

 
 

We have one group of 8, leaving two behind. 

 
 
Two more unexplosions. 

 

https://gdaymath.com/lessons/explodingdots/8-5-converting-fractions-decimals/
https://www.explodingdots.org/island/I8
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This gives two more groups of 8 leaving four behind.  

 
Unexploding again  

 
 
reveals five more groups of 8 leaving no remainders.  

 

 

We see that, as a decimal, 
1
8

 turns out to be 0.125 . And as a check we have  

125 25 5 10.125
1000 200 40 8

= = = = .  

 
Here are some practice problems for you to pick and choose from.   
 

Practice 48: Perform the division in a 1 10←  machine to show that 
1
4

, as a decimal, is 0.25 . 

Practice 49: Perform the division in a 1 10←  machine to show that 
1
2

, as a decimal, is 0.5 . 

Practice 50: Perform the division in a 1 10←  machine to show that 
3
5

, as a decimal, is 0.6 . 

Practice 51: Perform the division in a 1 10←  machine to show that 
3

16
, as a decimal, is 0.1875 . 

 
Practice 52: In simplest terms, what fraction is represented by each of these decimals? 

 
0.75     0.625      0.16       0.85       0.0625   
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Not all fractions lead to simple decimal representations. For example, consider the fraction 
1
3

. To 

compute it, we seek groups of three in the following picture. 
 

 
  
Let’s unexplode. 

 
 
We see three groups of 3 leaving one behind.  

 
 
Unexploding gives another ten dots to examine. 

 
 
We find another three groups of 3 leaving one behind. 

 
 

And so on. We are caught in an infinitely repeating cycle.  
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This puts us in a philosophically interesting position. As human beings we cannot conduct this, or any, 
activity for an infinite amount of time. But it seems very tempting to write 
 

1 0.33333
3
=   

 
with the ellipsis representing the instruction “keep going with this pattern forever.” In our minds we can 
almost imagine what this means. But as a practical human being it is beyond our abilities: one cannot 
actually write down those infinitely many 3s represented by the ellipses. 
 
Nonetheless, many people choose not to contemplate what an infinite statement like this means and 
just carry on to say that some decimals are infinitely long and not be worried by it.  In which case, the 

fraction 
1
3

 is one of those fractions whose decimal expansion goes on forever. 

 
Notation: Many people make use of a vinculum (a horizontal bar) to represent infinitely long repeating 
decimals. For example, 0.3  means “repeat the 3 forever”  
 

0.3 0.3333=   
 
and 0.38142  means “repeat the group 142 forever” after the beginning 38 hiccup: 
 

0.38142 0.38142142142142=  . 
 

As another (complicated) example, here is the work that converts the fraction 
6
7

 to an infinitely long 

repeating decimal. Make sure to understand the steps one line to the next.  
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Do you see, with this 6 in the final right-most box that we have returned to the very beginning of the 
problem? This means that we shall simply repeat the work we have done and obtain the same sequence 
857142 of answers, and then again, and then again. We have   
 

 
6 0.857142857142857142857142
7
=  . 

 
Some more practice questions if you like.  
 

Practice 53: Compute 
4
7

 as an infinitely long repeating decimal. 

Practice 54: Compute 
1
11

 as an infinitely long repeating decimal. 

 
Practice 55: Which of the following fractions give infinitely long decimal expansions?  

1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10

 

 
Practice 56: Use a 1 10←  machine to compute 133 6÷ , writing the answer as a decimal. 
 
 
Practice 57: Use a 1 10←  machine to compute 255 11÷ , writing the answer as a decimal. 
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IRRATIONAL NUMBERS 
 

Video:  
Irrational Numbers video (+ all follow-on content you see). 

 Web App: 
Eighth Experience. 

 

 
 
 
We have seen that fractions can possess finitely long decimal expansions. For example,  

 
1 0.125
8
=  and 

1 0.5
2
= .  

 
And we have seen that fractions can possess infinitely long decimal expansion. For example,  
 

1 0.3333....
3
=  and 

6 0.857142057142857142...
7
= . 

 
All the examples of fractions with infinitely long decimal expansions we’ve seen so far fall into a 
repeating pattern. This is curious.  
 
  

https://gdaymath.com/lessons/explodingdots/8-6-irrational-numbers/
https://www.explodingdots.org/island/I8
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We can even say that our finite examples eventually fall into a repeating pattern too, a repeating 
pattern of zeros after an initial start. 
 

1 0.12500000.... 0.1250
8
1 0.50000.... 0.50
2
1 0.3
3
6 0.857142
7

= =

= =

=

=

 

 
 
This begs the question: Does every fraction have a decimal representation that eventually repeats? 
 
The answer to this question is YES and our method of division explains why. 
 
 
Let’s go through the division process again, slowly, first with a familiar example. Let’s compute the 

decimal expansion of 
1
3

 again in a 1 10←  machine. We think of 
1
3

 as the answer to the division 

problem 1 3÷ , and so we need to find groups of three within a diagram of one dot. 
 

 
 
We unexplode the single dot to make ten dots in the tenths position. There we find three groups of 
three leaving a remainder of 1 in that box.  

 
 
Now we can unexploded that single dot in the tenths box and write ten dots in the hundredths box. 
There we find three more groups of three, again leaving a single dot behind. 
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And so on. We are caught in a cycle of having the same remainder of one dot from cell to cell, meaning 

that the same pattern repeats. Thus we conclude
1 0.333...
3
= . The key point is that the same remainder 

of a single dot kept appearing.  
 

Here’s a more complicated example. Let’s compute the decimal expansion of 
4
7

in the 1 10←  machine. 

That is, let’s compute 4 7÷ .  
 

 
 
We start by unexploding the four dots to give 40 dots in the tenths cell. There we find 5 groups of seven, 
leaving five dots over. 

 
 
Now unexplode those five dots to make 50 dots in the hundredths position. There we find 7 groups of 
seven, leaving one dot over. 
 

 
 
Unexplode this single dot. This yields 1 group of seven leaving three remaining.  

 
 
Unexplode these three dots. This gives 4 groups of seven with two remaining.  
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Unexplode the two dots. This gives 2 groups of seven with six remaining. 

 
 
Unexplode the six dots. This gives 8 groups of seven with four remaining. 
 

 
 
But this is the predicament we started with: four dots in a box! 
 
So now we are going to repeat the pattern and produce a cycle in the decimal representation. We have  
  

4 0.571428 571428 571428
7
= . 

 
Stepping back from the specifics of this problem, it is clear now that one must be forced into a repeating 
pattern. In dividing a quantity by seven, there are only seven possible numbers for a remainder number 
of dots in a cell - 0, 1, 2, 3, 4, 5, or 6 – and there is no option but to eventually repeat a remainder and so 
enter a cycle.   
 

In the same way, the decimal expansion of 
18
37

 must also cycle. In doing the division, there are only 

thirty-seven possible remainders for dots in a cell (0, 1, 2, …, 36). As we complete the division 
computation, we must eventually repeat a remainder and again fall into a cycle.  
 
We have just established a very interesting fact. 
 

ALL FRACTIONS HAVE A REPEATING DECIMAL REPRESENTATION.  
 
(A repeating pattern of zeros is possible. In fact, as a check, conduct the division procedure for the 

fraction 
1
8

. Make sure to understand where the cycle of repeated remainders commences.) 
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This now opens up a curious idea: 
 

A quantity given by a decimal expansion that does not repeat cannot be a fraction! 
 
For example, the quantity 
 
 0.10 1100 111000 11110000 11111000000  
 
is designed not to repeat (though there is a pattern to this decimal expansion) and so represents a 
number that is not a fraction. 
 
A number that is equivalent to the ratio of two whole numbers (that is, a fraction) is called a rational 
number. A number that cannot be represented this way is called an irrational number. 
 
It looks like we have just proved that irrational numbers exist! Not all numbers are fractions.  
 
In fact, we can now invent all sorts of numbers that can’t be fractions! For example 
 
 0.102030405060708090100110120130140150  
and 

0.3030030003000030000030000003  
 
are irrational numbers. 
 
Of course, we have all heard that numbers like 2  and π  are irrational numbers. It is not at all obvious 
why they are and how you would go about proving that they are. (In fact, it took mathematicians about 
2000 years to finally establish that π  is an irrational number. Swiss mathematician Johann Lambert 
finally proved it so in 1761.) But if you are willing to believe that these numbers are irrational, then you 
can say for sure that their decimal expansions possess no repeating patterns!  
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DECIMALS IN OTHER BASES 
 

Who said we need to stay with a 1 10←  machine? 
 
The following picture shows that 1432 13 110 2R÷ = in a 1 5← machine. 
 

 
 

If we work with reciprocals of powers of five we can keep unexploding dots and continue the division 
process. 

 
Here goes! 

 
(This reads as 1432 13 110.1 0.2R÷ =  if you like.)  
 

 
(This reads as 1432 13 110.11 0.02R÷ =  if you like.)  
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And so on. We get, as a statement of base 5  arithmetic, the following: 
 

 1432 13 110.1111÷ =  . 
 
To translate this to ordinary arithmetic we have that 
 

1432  in base five is 1 125 4 25 3 5 1 1 242× + × + × + × = , 
13  in base five is 1 5 3 1 8× + × = , 

110.111...  in base five is 
1 1 130
5 25 125

+ + + +  , 

 
so we are claiming, in ordinary arithmetic, that  

 
1 1 1242 8 30
5 25 125

÷ = + + + +  . 

Whoa!  
 
 
Here are some (challenging) practice questions if you are up for them. 
 

Practice 58: Compute 8 3÷  in a base 10  machine and show that it yields the answer 2.666. 
 
Practice 59: Compute 1 11÷  as a problem in base 3  and show that it yields the answer 
0.0202020202 .   

(In base three, “11” is the number four, and so this question establishes that the fraction 
1
4

 written 

in base three is 0.0202020202 .) 
 

Practice 60: Show that the fraction 
2
5

, written here in base ten, has the “decimal” representation 

0.121212  in base four. (That is, compute 2 5÷ in a 1 4←  machine.)  
 
Practice 61: CHALLENGE: What fraction has decimal expansion 0.3333  in base 7 ? Is it possible to 
answer this question by calling this number x  and multiplying both sides by 10 ? (Does “10 ” 
represent ten?) 
 

Practice 62: Use an 1 x←  machine and x -mals to show that 2 3 4

1 1 1 1 1
1x x x x x
= + + + +

−
 . 
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WILD EXPLORATIONS 
Here again are some “big question” investigations you might want to explore, or just think about 
before moving on. Have fun!  
 
Wild Exploration 1:  WHICH FRACTIONS GIVE FINITE DECIMAL EXPANSIONS? 

We’ve seen that 
1 0.5
2
=  and 

1 0.25
4
=  and 

1 0.125
8
=  each have finite decimal expansions. (We’re 

ignoring infinite repeating zeros now.) 
 
Of course, all finite decimal expansions give fractions with finite decimal expansions! For example, 

0.37  is the fraction
37

100
, showing that  

37
100

 has a finite decimal expansion. 

 
 
What must be true about the integers a  and b (or true just about a  or just about b ) for the fraction 
a
b

 to have a finite decimal expansion?   

 
Wild Exploration 2:  BACKWARDS: Are repeating decimals fractions? 

We have seen that 
1 0.3
3
=  and  

4 0.571428
7
= , for example, and that every fraction gives a decimal 

expansion that (eventually) repeats, perhaps with repeating zeros. 
 
Is the converse true? Does every infinitely repeating decimal fraction correspond to a number that is 
a fraction?  
 

Is 0.17  a fraction? If so, which fraction is it?  
Is 0.450  a fraction? If so, which fraction is it? 
Is 0.322222... 0.32=  a fraction? Is 0.17023  a fraction? 

 
Indeed, does every repeating decimal have a value that is a fraction? 
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4. ALL BASES, ALL AT ONCE 
 

Videos:  
Introductory video. 
Division in any base video (+ all follow-on content you see). 
 

 Web App: 
Sixth Experience. 

 

 
 
Okay. Up to now we have been dealing with grade-school or primary-school arithmetic.  Let’s now head 
on to advanced high school algebra.  
 
Whoa! 
 
But here’s the thing: there is nothing to it. We’ve already done all the work. 
 
The only thing we have to realize is that there is nothing special about a 1 ← 10 machine. We could do 
all of grade school arithmetic in a 1 ← 2 machine if we wanted to, or a 1 ← 5 machine, or even a 1 ← 37 
machine. The math doesn’t care in which machine we do it. It is only us humans with a predilection for 
the number ten that draws us to the 1 ← 10 machine.  
 
Let’s now go through much of what we’ve done. But let’s now do it in all possible machines, all at once!  
Sounds crazy. But it is surprisingly straightforward. 
 
So, what I am going to do is draw a machine on the board, but I am not going to tell you which machine 
it is. It could be a 1 ← 10 machine again, I am just not going to say. Maybe it will be a 1 ← 2 machine, or 
a 1 ← 4 machine or a 1 ← 13 machine. You just won’t know as I am not telling. It’s the mood I am in!  

https://gdaymath.com/lessons/explodingdots/6-1-welcome/
https://gdaymath.com/lessons/explodingdots/6-2-division-base/
https://www.explodingdots.org/island/I6
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Now, in high school algebra there seems to be a favorite letter of the alphabet to use for a quantity 
whose value you do not know. It’s the letter 𝑥𝑥. (Always x ! It’s x and x and x and ….) 
 
So, let’s work with an 1 ← 𝑥𝑥 machine with the letter 𝑥𝑥 representing some number whose actual value 
we do not know.  
 
In a 1 ← 10 machine the place values of the boxes are the powers of ten: 1, 10, 100, 1000, … .  
In a 1 ← 2 machine the place values of the boxes are the powers of two: 1, 2, 4, 8, 16, … . 
And so on.  Thus, in an 1 ← 𝑥𝑥 machine, the place values of the boxes will be the powers of 𝑥𝑥. 

 

 
 
As a check, if I do tell you that 𝑥𝑥 actually is 10 in my mind, then the powers 1, 𝑥𝑥, 𝑥𝑥2 , 𝑥𝑥3 , … match the 
numbers 1, 10, 100, 1000, … which is correct for a 1 ← 10 machine. If, instead, I tell you that 𝑥𝑥 is really 2 
in my mind, then the powers 1, 𝑥𝑥, 𝑥𝑥2 , 𝑥𝑥3 , … match the numbers 1, 2, 4, 8, … which is correct for a 
1 2← machine.This 1 ← 𝑥𝑥 machine really is representing all machines, all at once! 
 
Okay. Out of the blue! Here’s an advanced high school algebra problem.  

 

Compute: ( ) ( )22 7 6 2x x x+ + ÷ + . 
 
 
Here’s what 2𝑥𝑥2 + 7𝑥𝑥 + 6 looks like in an 1 ← 𝑥𝑥 machine. It’s two 𝑥𝑥2’s, seven 𝑥𝑥’s, and six ones.  

 

 
 
And here’s what 𝑥𝑥 + 2 looks like.    

 
 
The division problem (2𝑥𝑥2 + 7𝑥𝑥 + 6) ÷ (𝑥𝑥 + 2) is asking us to find copies of 𝑥𝑥 + 2 in the picture of 
2𝑥𝑥2 + 7𝑥𝑥 + 6. 
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I see two copies of 𝑥𝑥 + 2 at the 𝑥𝑥 level and three copies at the 1 level. The answer is 2𝑥𝑥 + 3. 

 
Stare at the picture for �𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟕𝟕𝒙𝒙+ 𝟔𝟔�÷ (𝒙𝒙 + 𝟐𝟐) = 𝟐𝟐𝒙𝒙+ 𝟑𝟑.  Does it look familiar? 
Look back at the picture of 276 12 23÷ =  we did back in section 1.2.  
 

We have identical pictures! 

 
 
We’ve just done a high school algebra problem as though it is a grade school arithmetic problem! 
 
What’s going on? 
 
Suppose I told you that 𝑥𝑥 really was 10 in my head all along. Then 2𝑥𝑥2 + 7𝑥𝑥 + 6 is the number 
2 × 100 + 7 × 10 + 6, which is 276. And 𝑥𝑥 + 2 is the number 10 + 2, that is, 12. And so, we computed 
276 ÷ 12. We got the answer 2𝑥𝑥 + 3, which is 2 × 10 +  3 =  23, if I am indeed now telling you that 𝑥𝑥 is 
10. 
 
So, we did just repeat a grade-school arithmetic problem! 

 
Aside: By the way, if I tell you that 𝑥𝑥 was instead 2, then 
 
 2𝑥𝑥2 + 7𝑥𝑥 + 6 = 2 × 4 + 7 × 2 + 6, which is 28,  
 
 𝑥𝑥 + 2 = 2 + 2, which is 4,  
and 
 2𝑥𝑥 + 3 = 2 × 2 + 3, which is 7.       
 
We just computed 28 ÷ 4 = 7, which is correct! 
 
Doing division in an 1 ← 𝑥𝑥 machine is really doing an infinite number of division problems all in 
one hit. Whoa! 
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Question: Try computing (2𝑥𝑥3 + 5𝑥𝑥2 + 5𝑥𝑥 + 6) ÷ (𝑥𝑥 + 2) in an 1 ← 𝑥𝑥 machine to get the answer 
2𝑥𝑥2 + 𝑥𝑥 + 3 (And if I tell you 𝑥𝑥 is 10 in my mind, can you see that this matches 2256 ÷ 12 = 213?) 

  
In high school, numbers expressed in an 1 ← 𝑥𝑥 machine are usually called polynomials. They are just 
like numbers expressed in base 10, except now they are “numbers” expressed in base 𝑥𝑥. (And if 
someone tells you 𝑥𝑥 is actually 10, then they really are base 10 numbers!)  
 
Keeping this in mind makes so much of high school algebra so straightforward: it is a repeat of grade 
school base 10 arithmetic.  
 

 
 

Practice 63:  
a)  Compute (2𝑥𝑥4 + 3𝑥𝑥3 + 5𝑥𝑥2 + 4𝑥𝑥 + 1) ÷ (2𝑥𝑥 + 1). 
b)  Compute (𝑥𝑥4 + 3𝑥𝑥3 + 6𝑥𝑥2 + 5𝑥𝑥 + 3) ÷ (𝑥𝑥2 + 𝑥𝑥 + 1). 
 
If I tell you that 𝑥𝑥 is actually 10 in both these problems what two division problems in 
ordinary arithmetic have you just computed? 
 

Practice 64: Here’s a polynomial division problem written in fraction notation. Can you do it? (Is 
there something tricky to watch out for?)  

𝑥𝑥4 + 2𝑥𝑥3 + 4𝑥𝑥2 + 6𝑥𝑥 + 3
𝑥𝑥2 + 3

 

 
Practice 65: Show that (𝑥𝑥4 + 4𝑥𝑥3 + 6𝑥𝑥2 + 4𝑥𝑥 + 1) ÷ (𝑥𝑥 + 1) equals 𝑥𝑥3 + 3𝑥𝑥2 + 3𝑥𝑥 + 1. 

a) What is this saying for 𝑥𝑥 = 10? 
b) What is this saying for 𝑥𝑥 = 2? 
c) What is this saying for 𝑥𝑥 equal to each of 3, 4, 5, 6, 7, 8, 9, and 11? 
d) What is this saying for 𝑥𝑥 = 0? 
e) What is this saying for 𝑥𝑥 = −1? 
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A PROBLEM! 
 

Video:  
A problem video (+ all follow-on content you see). 
 

 Web App: 
Sixth Experience. 

 
 
Okay. Now that we are feeling really good about doing advanced algebra, I have a confession to make.  
 
I’ve been fooling you!  
 
I’ve been choosing examples that are designed to be nice and to work out just beautifully. The truth is, 
this fabulous method of ours doesn’t usually work so nicely. 
 
Consider, for example,  

𝑥𝑥3 − 3𝑥𝑥 + 2
𝑥𝑥 + 2

 
 
Do you see what I’ve been avoiding all this time? Yep. Negative numbers. 
 
Here’s what I see in an 1 ← 𝑥𝑥 machine. 
 

 
 
We are looking for one dot next to two dots in the picture of 𝑥𝑥3 − 3𝑥𝑥 + 2.  And I don’t see any!  
So, what can we do, besides weep a little?  
 
Do you have any ideas?  
 
We need some amazing flash of insight for something clever to do. Or maybe polynomial problems with 
negative numbers just can’t be solved with this dots and boxes method. 
 
So, what do you think? Any flashes of insight? 
  

https://gdaymath.com/lessons/explodingdots/6-3-problem/
https://www.explodingdots.org/island/I6
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RESOLUTION 
 

Video:  
Resolution video (+ all follow-on content you see). 
 

 Web App: 
Sixth Experience. 

 
 
We are stuck on 

𝑥𝑥3 − 3𝑥𝑥 + 2
𝑥𝑥 + 2

 
 
with the 1 ← 𝑥𝑥 machine picture 

 

 
 
We are looking for copies of 𝑥𝑥 + 2, one dot next to two dots, anywhere in the picture of 𝑥𝑥3 − 3𝑥𝑥 + 2.   
 
We don’t see any.  
 
And we can’t unexplode dots to help us out as we don’t know the value of 𝑥𝑥. (We don’t know how many 
dots to draw when we unexplode.)  
 
The situation seems hopeless at present.  
 
But I have a piece of advice for you, a general life lesson in fact. It’s this. 
 

IF THERE IS SOMETHING IN LIFE YOU WANT, MAKE IT HAPPEN!   
(And deal with the consequences.)  

 
Right now, is there anything in life we want?  
 
Look at that single dot way out to the left. Wouldn’t it be nice if we had two dots in the box next to it, to 
make a copy of 𝑥𝑥 + 2? 
 
So, let’s just put two dots into that empty box! That’s what I want, so let’s make it happen! 
But there are consequences: that box is meant to be empty. And in order to keep it empty, we can put in 
two antidots as well!  

https://gdaymath.com/lessons/explodingdots/6-4-resolution/
https://www.explodingdots.org/island/I6
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Brilliant! 
 
We now have one copy of what we’re looking for. 

 
But there is still the question: Is this brilliant idea actually helpful? 
 
Hmm.  
 
Well. Is there anything else in life you want right now? Can you create another copy of 𝑥𝑥 + 2 anywhere? 
 
I’d personally like a dot to the left of the pair dots in the rightmost box. I am going to make it happen! I 
am going to insert a dot and antidot pair. Doing so finds me another copy of 𝑥𝑥 + 2. 
 

 
 
This is all well and good, but are we now stuck? Maybe this brilliant idea really just isn’t helpful. 
 
Stare at this picture for a while. Do you notice anything? 
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Look closely and we start to see copies of the exact opposite of what we’re looking for! Instead of 
one dot next to two dots, there are copies of one antidot next to two antidots. 

 
Whoa!  
 
And how do we read the answer? We see that (𝑥𝑥3 − 3𝑥𝑥 + 2) ÷ (𝑥𝑥 + 2) is 𝑥𝑥2 − 2𝑥𝑥 + 1. 
Fabulous! 
 
So actually, I was lying about fooling you. We can actually do all polynomial division problems with this 
dots and boxes method, even ones with negative numbers! 
 

Question: Show that 
𝑥𝑥10−1
𝑥𝑥2−1

 equals 𝑥𝑥8 + 𝑥𝑥6 + 𝑥𝑥4 + 𝑥𝑥2 + 1. 

 

Practice 66: Compute 𝑥𝑥
3−3𝑥𝑥2+3𝑥𝑥−1

𝑥𝑥−1
. 

Practice 67: Try 4𝑥𝑥
3−14𝑥𝑥2+14𝑥𝑥−3

2𝑥𝑥−3
. 

Practice 68: If you can do this problem, 4𝑥𝑥
5−2𝑥𝑥4+7𝑥𝑥3−4𝑥𝑥2+6𝑥𝑥−1

𝑥𝑥2−𝑥𝑥+1
, you can probably do any problem!  

 
Practice 69: Can you deduce what the answer to (2𝑥𝑥2 + 7𝑥𝑥 + 7) ÷ (𝑥𝑥 + 2) is going to be before 
doing it? 
 

Practice 70: Compute 𝑥𝑥4

𝑥𝑥2−3
. 

 

Practice 71: Try this crazy one: 5𝑥𝑥
5−2𝑥𝑥4+𝑥𝑥3−𝑥𝑥2+7

𝑥𝑥3−4𝑥𝑥+1
.  

 
If you do this with paper and pencil, you will find yourself trying to draw 84 dots at some 
point. Is it swift and easy just to write the number “84”? In fact, how about just writing 
numbers and not bother drawing any dots at all? 

 
Aside: Is there a general way to conduct the dots and boxes approach with ease on paper? Rather 
than draw boxes and dots, can one work with tables of numbers that keep track of coefficients? (The 
word synthetic is often used for algorithms one creates that are a step or two removed from that 
actual process at hand.) 
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SOMETHING BOLD FOR THE BRAVE! 
 
Here is a picture of the very simple polynomial 1 and the polynomial 1− 𝑥𝑥. 

 
Can you compute 1

1−𝑥𝑥
 ? Can you interpret the answer?  

 
 
 
 
 

WILD EXPLORATIONS 
Here again are some “big question” investigations you might want to explore, or just think about 
before moving on. Have fun!  
 
Wild Exploration 1:  CAN WE EXPLAIN AN ARITHMETIC TRICK? 
Here’s an unusual way to divide by nine.  
 
To compute 21203 ÷ 9, take the digits in “21203” from left to right computing the partial sums along 
the way as follows 

 
and then read off the answer  

21203 9 2355 8R÷ = . 
In the same way,  

1033 9 1 | 1 0 |1 0 3 | 1 0 3 3 114 7R R÷ = + + + + + + =  
and 

2222 9 246 8R÷ =  
 
Can you explain why this trick works?  
 
Here’s the approach I might take: for the first example, draw a picture of 21203 in a 1 ← 10 machine, 

but think of nine as 10 − 1. That is, look for copies of  in the picture. 
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Wild Exploration 2:  Exploding Number Theory 
Use an 1 ← 𝑥𝑥 machine to compute each of the following 
 

a) 𝑥𝑥
2−1
𝑥𝑥−1

         b) 𝑥𝑥
3−1
𝑥𝑥−1

        c) 𝑥𝑥
6−1
𝑥𝑥−1

       d) 𝑥𝑥
10−1
𝑥𝑥−1

  
 

Can you now see that 𝑥𝑥
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−1
𝑥𝑥−1

 will always have a nice answer without a remainder? 
 
Another way of saying this is that  
 
 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1 = (𝑥𝑥 − 1) × (something). 
 
For example, you might have seen from part c) that 𝑥𝑥6 − 1 = (𝑥𝑥 − 1)(𝑥𝑥5 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1).  
 
This means we can say, for example, that 176 − 1 is sure to be a multiple of 16! How? Just choose 
𝑥𝑥 = 17 in this formula to get  
 

176 − 1 = (17 − 1) × (something) = 16 × (something). 
 
a) Explain why 999100 − 1 must be a multiple of 998.  

 
b) Can you explain why 2100 − 1 must be a multiple of 3, and a multiple of 15, and a multiple of 

31 and a multiple of 1023? (Hint: 2100 = (22)50 = 450 , and so on.)   
 

c) Is 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1 always a multiple of 𝑥𝑥 + 1? Sometimes, at least? 
 

d) The number 2100 + 1 is not prime. It is a multiple of 17. Can you see how to prove this? 
 

 
 
 

More content:  
Remainders. 

 Web App: 
Sixth Experience. 

 
  

https://gdaymath.com/lessons/explodingdots/6-5-optional-remainders/
https://www.explodingdots.org/island/I6
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5. WILD THINKING 
 
Want to go truly wild?  
 
Would you like to see and play with base one-and-a-half?  
 
Would you like to play with base negative two? 
 
Check out these extra videos and materials for some seriously wild exploration! 
 
 

 
Experience 9: Weird and Wild Machines 
 
Experience 11: Grape Codes and more. 

 
Experience 7: Infinite Sums 
 
Experience 10: Unusual Numbers 

 
The Web App. 

 
 
 

  

https://gdaymath.com/lessons/explodingdots/9-1-welcome/
https://gdaymath.com/lessons/explodingdots/11-1-grape-codes/
https://gdaymath.com/lessons/explodingdots/7-1-welcome/
https://gdaymath.com/lessons/explodingdots/10-1-troubling-number-usual-mathematics/
https://www.explodingdots.org/
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PRACTICE PROBLEM 
SOLUTIONS 
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Practice 1: 
a) Here’s how the code 1101 appears from thirteen dots.  

 
b) The number fifty has code 110010. 
 
 
Practice 2: Assuming we want to make the agreement that we’ll always choose to explode dots if we 
can, then the code 100211 is not complete: the two dots in the third-to-last box can explode to give a 
final code of 101011. 
 
Practice 3: This is the code for the number nineteen. (In the next section, we’ll discover a swift way to 
see this.)  
 
Practice 4: a) Do it!  b) Do this one too!  c) You’re on a roll. Do this third one as well! 

 
Practice 5: Again, if we agree to do all the explosions we can, then this code is not complete: three of 
the dots in the second-to-last box can explode to give 2111. 

 
Practice 6: The number thirty-five has this code.   

 
Practice 7: “Four dots in any one box explode and are replaced by one dot one place to the left.” The 
number thirteen has code 31 in a 1 ← 4 machine. 

 
Practice 8: 23 

 
Practice 9: 14 

 
Practice 10: 22 

 
Practice 11: 22 (Same code as the previous answer – but, of course, the interpretation of the code is 
different.)  

 
Practice 12: a) 13  b) 37  c) 5846  (These are the codes we use for numbers in everyday life!)  
 
Practice 13: Thirty-seven. It’s a 32 and a 4 and a 1.  

 



 

87 
 

Practice 14:  11001000 
 

Practice 15: 
a) Each dot in the next box to the left is worth three 81’s, that’s 243. 
 
b) Yes it is okay to insert a zero at the front of the code. This would say that there are no 27’s, which 

is absolutely correct. Deleting the end zero at the right, however, is problematic. 120 is the code 
for fifteen (one 9 and two 3’s) but 12 is the code for five (one 3 and two 1’s).  

 
c) One hundred and ninety one. (Two 81’s, one 27, and two 1’s.) 
 
d) 21102 

 
Practice 16: 

a) For a 1 ← 4 machine, boxes have the following values:  

 
 

b) The number twenty-nine has code 131 in a 1 ← 4 machine.  
 
c) Thirty. (This is one more than the code for twenty-nine!)  

 
Practice 17: Might Venutians use base twelve? This means they will need twelve different symbols for 
writing numbers. 
 
By the way, have you noticed that we use ten different symbols – 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0 – which 
we call digits. (We call our fingers digits too!)   
 
Practice 18:  
 

148 323 4 | 6 |11 471+ = =  
 
567 271 7 |13 | 8 838+ = =  
 
377 188 4 |15 |15 5 | 5 |15 565+ = = =  
 
582 714 12 | 9 | 6 1 | 2 | 9 | 6 1296+ = = =  
 
310462872 389107123 6 | 9 | 9 | 5 | 6 | 9 | 9 | 9 | 5 699569995+ = =  
 
87263716381 18778274824 9 |15 | 9 |13 |11 | 9 | 8 |10 |11 |10 | 5

... 106041991205
+ =

= =
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Practice 19:  We have 
 

26417 4 8 | 24 |16 | 4 | 28 10 | 4 |16 | 4 | 28 1 | 0 | 4 |16 | 4 | 28 1 | 0 | 5 | 6 | 4 | 28 105668× = = = = =  
26417 5 10 | 30 | 20 | 5 | 35 10 | 30 | 20 | 8 | 5 10 | 32 | 0 | 8 | 5 13 | 2 | 0 | 8 | 5 132085× = = = = =  
26417 9 18 | 54 | 36 | 9 | 63 18 | 54 | 36 |15 | 3 ... 237753× = = = =  
 
26417 10 20 | 60 | 40 |10 | 70 264170× = = =   
 
and 
 
26417 11 22 | 66 | 44 |11 | 77 ... 290587× = = =  
26417 12 24 | 72 | 48 |12 | 84 ... 317004× = = =  
 
For a full discussion as to why 26417 × 10 is 264170 read on! 

 
Practice 20: 4760 and 47600. 
 
Practice 21: 9190  comes from 919 10× , and so 9190 10÷ must be 919 . 
Also, 3310000 can be seen as coming from 33100 100×  and so 3310000 100÷  must be 33100 . 
 
Practice 22:  

6328 4469 2 | 1 | 4 | 1 1 | 9 | 4 | 1 1 | 8 | 6 | 1 1 | 8 | 5 | 9 1859− = − − − = − − = − = =   
 
78390231 32495846 4 | 6 | 1 | 0 | 5 | 6 | 1 | 5

4 | 5 | 9 | 0 | 5 | 6 | 1 | 5
4 | 5 | 8 |10 | 5 | 6 | 1 | 5
4 | 5 | 8 | 9 | 5 | 6 | 1 | 5
4 | 5 | 8 | 9 | 4 | 4 | 1 | 5
4 | 5 | 8 | 9 | 4 | 3 | 9 | 5
4 | 5 | 8 | 9 | 4 | 3 | 8 | 5 45894385

− = − − − − −
= − − − −
= − − − −
= − − −
= − −
= −
= =   

 
I personally find it much easier to do the unexplosions from left to right. 

 
 

Practice 23: 2783 ÷ 23 = 121 
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Practice 24:   3900 ÷ 12 = 325.  
We need some unexplosions along the way. (And can you see how I am getting efficient with my loop 
drawing?) 

 
 
Practice 25:      46632 ÷ 201 = 232. 

 
 

 
 
 
 
Practice 26:     31533 ÷ 101 = 312 with a remainder of 21.  That is, 31533 ÷ 101 = 312 + 21

101
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Practice 27: We have 2789 ÷ 11 = 253 with a remainder of 6. That is, 2789 ÷ 11 = 253 + 6
11

. 

 
 
 
Practice 28:    4366 ÷ 14 = 311 + 12

14
. 

 
 
Practice 29:    5481 ÷ 131 = 41 + 110

131
.  

 

 
 
 
Practice 30: We certainly see one group of five right away. 

 
 

Let’s perform some unexplosions. (And let’s write numbers rather than draw lots of dots. 
Drawing dots gets tedious!) 
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We see 61230 ÷ 5 = 12246.  
 
 
 
Practice 31: “Six tenths” says exactly what the number is.  

 
 
Practice 32: Indeed both students are correct. Performing some explosions on Subra’s picture gives 
JinJin’s picture. (And performing some unexplosions on JinJin’s picture gives Subra’s!) 

 
 
Practice 33: a) B    b) C 
 

Practice 34: We have, in order, 

1
20 , 

1
5 , 

4
5 , and 

1
250 . 

 
 

Practice 35: have, in order, 

4 0.4
10

=
, 

4 0.04
100

=
, 

5 0.05
100

=
, 

5 0.005
1000

=
, and

8 0.0008
10000

=
.          

 
Practice 36: a) B   b) D 
 
Practice 37: In order, we have 0.35 , 0.64 , 0.602 , 0.34 , and 0.75 . 

 

Practice 38: a) As a mixed number it is 
32

10
. Or we could write

3 20 3 232
10 10 10 10

+ = + = .    
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b) 
4 117 17

100 25
+ = .   

 

c) 
10031003

10000
. 

 
Practice 39: a) Unexploding one dot in the tenths box does “add” ten dots to the hundredths box. 

 
b) Unexploding one dot in the tenths box does now give us 19 dots in the hundredths box. 
Unexploding these gives 190 dots in the thousandths box. 
 
c) There isn’t much to say here. One can see that one can convert any one picture to any other 
by explosions and/or unexplosions. 
 
d) Yes! All the pictures are the same, so 0.19 and 0.190 are the same number. 

 
 
Practice 40: a) 5.3    

b) 
27 7.2

10
+ =    

c) 13.5      

d) 
15106 106.15

100
+ =    

e) 
3 123 3 3.12
25 100

+ = + =     

f) 
1 252 2 2.25
4 100

+ = + =    

g) 
11 2753 3 3.275
40 1000

+ = + =  

 
Practice 41: 0.05 0.006 0.056+ =  and 0.05 0.006 0.0 | 5 | 6 0.044− = − = . Drawing the dots and 
boxes makes these answers clear. 

 
Practice 42: If I draw dots and boxes, then I agree with Agatha.  

 

 
 
But I don’t agree with Percy. 
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Practice 43: Multiplying by 100  is the same as multiplying by ten and then multiplying by ten again.  
 

 

Practice 44: We have 

4 5 20 20.04 0.5 0.02
100 10 1000 100

× = × = = =
.  

 
(We could have seen this right away too if we noted that 0.5  is a half, and one half of 0.04  is 
0.02 .) 
 

We have 
3 8 5 51000 0.0385 1000 30 8 38.5

100 1000 10000 10
 × = × + + = + + = 
 

. 

 
 

Practice 45: We have 
0.9 9 0.09
10 100

= = . 

We have 
2.34 1 3 4 2 3 42 0.00234
1000 1000 10 100 1000 10000 100000

 = × + + = + + = 
 

  . 

We have 
4 1 4 440 0.4004

100 100 10 10000
 + × = + = 
 

. 

 
 

 

Practice 46:  
0.75 75 3 0.03
25 2500 100

= = = . 

 
 

 
Practice 47: This is technically a yes/no question, and the smart answer is no.  
 

For those who answered yes, here are my approaches to the problems.  
   

a) 
( ) ( ) 3 3 9 90.3 5.37 2.07 0.3 3.3 3 0.99

10 10 10 100
 × − = × = × + = + = 
   

 

b)  
( ) ( )0.1 1.01 0.1 0.1 0.91 1.01 101 505 5.05

0.11 0.09 0.2 0.2 20 100
+ − +

= = = = =
+

. 
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c) 

( )( ) ( )( )

( )( )

( )( )

0.002 0.2 2.02 2.2 0.22 0.002 0.404 1.98
2.22 0.22 2

0.406 1.98
2

4 6 9 81 1000 100
10 1000 10 100

2 1000 100
400 6 100 90 8

2 1000 100
406 198

2 1000 100
80388

2 100000
40194 0.40194

100000

+ × − +
=

−

=

  + + + × ×  
  =

× ×
+ + +

=
× ×
×

=
× ×

=
×

= =

 

 
  Whoa! 
 
 
 

 
Practice 48: Do it!  
 
Practice 49: Do it too! 
 
Practice 50: Yep. Do it! 
 
Practice 51: You guessed it. Do it! 
 

 

Practice 52: In order, we have 

3
4 , 

5
8 , 

4
25 , 

17
20 , and 

5
80 . 

 

Practice 53: We get 
4 0.571428 571428 571428 571428 ...
7
= . 

 
 

Practice 54: We get 

1 0.09 09 09 09 ...
11

=
. 
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Practice 55: The fractions 
1
3

, 
1
6

, 
1
7

, and 
1
9

 have infinitely long decimal expansions. 

 
 

Practice 56: 

133 22.166666...
6

=
 . 

 
 

Practice 57: 

255 23.18181818....
11

=
. 

 
 

Practice 58: Do it! 
 

 
Practice 59: Do it too! 
 

 
Practice 60: Yep, do it! 
 

 
Practice 61: Let’s do all our writing in a 1 7←  machine. So the number seven is 10  and one less than 
this number is 6 . Also, notice that multiplying a number by seven in a 1 7←  machine has the effect of 
addending a zero at the end of the number. (Can you see why? It is the same reason why multiplying by 
ten in a 1 10←  machine has the effect of addending a zero.) Multiplying by seven also “shifts the 
decimal point” one place. 

 
Set 0.333.... x= . 
 
Multiply each side by seven (which looks like 10 ). This gives 
 
 3.3333... 10x= .  
 
The left side is 3 0.3333...+ , that is, 3  plus the original number. 
 
 3 10x x+ =  
 
Subtract x  from both sides. 
 
 3 6x=  
 
So x  must equal a half! 
 

 
 

Practice 62: Can you see how to do it? 
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Practice 63:  

a) (2𝑥𝑥4 + 3𝑥𝑥3 + 5𝑥𝑥2 + 4𝑥𝑥 + 1) ÷ (2𝑥𝑥 + 1) =  𝑥𝑥3 + 𝑥𝑥2 + 2𝑥𝑥 + 1  
b) (𝑥𝑥4 + 3𝑥𝑥3 + 6𝑥𝑥2 + 5𝑥𝑥 + 3) ÷ (𝑥𝑥2 + 𝑥𝑥 + 1) = 𝑥𝑥2 + 2𝑥𝑥 + 3 

 
And if 𝑥𝑥 happens to be 10, we’ve just computed 23541 ÷ 21 = 1121 and 13653 ÷ 111 = 123. 

 
Practice 64:  We can do it. The answer is 𝑥𝑥2 + 2𝑥𝑥 + 1. 

 
Practice 65:  
 

a)  For 𝑥𝑥 = 10 it says 14641 ÷ 11 = 1331  
 
b)  For 𝑥𝑥 = 2 it says 81 ÷ 3 = 27  
 
c)  For 𝑥𝑥 = 3 it says 256 ÷ 4 = 64 

For 𝑥𝑥 = 4 it says 625 ÷ 5 = 125  
For 𝑥𝑥 = 5 it says 1296 ÷ 6 = 216  
For 𝑥𝑥 = 6 it says 2401 ÷ 7 = 343  
For 𝑥𝑥 = 7 it says 4096 ÷ 8 = 512 
For 𝑥𝑥 = 8 it says 6561 ÷ 9 = 729  
For 𝑥𝑥 = 9 it says 10000 ÷ 10 = 1000  
For 𝑥𝑥 = 11 it says 20736 ÷ 12 =1728  

 
d) For 𝑥𝑥 = 0 it says 1 ÷ 1 = 1.  
 
e) For 𝑥𝑥 = −1 it says 0 ÷ 0 = 0.  Hmm! That’s fishy! (Can you have a 1 ← 0 machine?)  

 
 

Practice 66:   𝑥𝑥
3−3𝑥𝑥2+3𝑥𝑥−1

𝑥𝑥−1
= 𝑥𝑥2 − 2𝑥𝑥 + 1. 

 

Practice 67:    4𝑥𝑥
3−14𝑥𝑥2+14𝑥𝑥−3

2𝑥𝑥−3
= 2𝑥𝑥2 − 4𝑥𝑥 + 1. 

 

Practice 68:    4𝑥𝑥
5−2𝑥𝑥4+7𝑥𝑥3−4𝑥𝑥2+6𝑥𝑥−1

𝑥𝑥2−𝑥𝑥+1
= 4𝑥𝑥3 + 2𝑥𝑥2 + 5𝑥𝑥 − 1. 

 
Practice 69:    We know that (2𝑥𝑥2 + 7𝑥𝑥 + 6) ÷ (𝑥𝑥 + 2) = 2𝑥𝑥 + 3, so I bet (2𝑥𝑥2 + 7𝑥𝑥 + 7) ÷ (𝑥𝑥 + 2)  
turns out to be 2𝑥𝑥 + 3 + 1

𝑥𝑥+2
. Does it? Can you make sense of remainders? 
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Practice 70:    𝑥𝑥4

𝑥𝑥2−3
= 𝑥𝑥2 + 3 + 9

𝑥𝑥2−3
. 

 

Practice 71:    5𝑥𝑥2 − 2𝑥𝑥 + 21 + −14𝑥𝑥2+86𝑥𝑥−14
𝑥𝑥3−4𝑥𝑥+1

. 
 


