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INSTRUCTIONS for Students 
 

Just start at the beginning of this book and work your way through the 

sections! (Actually, it could be really fun to read it in a group or as a whole 

class and talk about and work through all the math together. Make it a 

community experience!)  

Try as much or as little as you like from each section and don’t stress over 

things. Just have fun with thinking about the ideas here. 

 

INTERACTIVE VERSION OF THIS BOOK and WIDGET 
 

Our friends at DhiMath have an interactive version of this book AND an 

interactive Exploding Dots machine you can play with.  
 

Find it at dhimath.org/explodingdots/book.html.   
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Some Comments for Teachers 
 
The invention of place value is one of humankind's greatest intellectual achievements. It is 
surprisingly nuanced, and it permeates the entire K-12 curriculum (and beyond!). So many 
mathematics standards rely on a deep understanding of place value. 
 
This workbook is a curriculum supplement designed to deepen upper-elementary and middle-
school students’ understanding of, appreciation for, and joy in mathematics. It focuses on the 
core of arithmetic and lays groundwork for algebra.  
 
The tool developed here is fun, appealing, and highly visual. It is called Exploding Dots and has 
been used by well over 7 million students and teachers across the planet. You will no longer 
hear students say: “Math is not for me.” 
 
This short video gives the story of this global phenomenon. 
 
 

 
https://youtu.be/q51_X8U9JkQ 
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This text is not a textbook. It is not designed to teach each mathematics topic in its fullest 

degree, nor in a manner designed as sole first introduction to the topic.  

But you will find that this material will—for your students, and for you! —shed stunning light on 

the curriculum materials you do use and help students gain profound, personal understanding 

of those resources as you explore them in full, complete detail.  

This volume will save you effort and time, and the set the stage for your students’ joyful 

understanding of math, development of powerful meta-cognition skills, and establishing the 

confidence for them to be empowered, thinking citizens of the world.  

 

A Resource for You 
 
These notes are based on the following text, which does give the full, robust mathematics of 
numbers and arithmetic, negative numbers, fractions, and decimals (and more!)  
 

 
 

It is available, for free, here: https://gdaymath.com/lessons/gmp/9-1-chapter-content/   
   

 

How Educators use this Book 
 
The first week of the school year is always informal and quirky. Some teachers follow this work 
as the start-of-the-year activity and continue on with weekly “Fun Fridays” or for between-unit 
breaks. Many classes read each section out loud together, pausing to try the practice problems, 
with the educator stepping in and illustrating ideas as needed.  
 
There are videos to follow and the interactive version of this book too at  
dhimath.org/explodingdots/book.html.   
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0. Introduction: A Story that is True 
 

G’Day!  

 

I’m James, and here is a story that is true. It is about me realizing as a 

young lad that mathematics is very powerful, likely more powerful 

than I as a human being can fully take in.  

 

 

When I was 12 or so I became fascinated with thinking about the universe and whether or not 

there could be other civilizations “out there.” And I remember wondering if it would be possible 

to communicate with such aliens (assuming they exist). What would it take to do so? 

 

I really thought hard about this and became very logical and rational in 

my thinking about it. 

First, I realized that communication of any kind requires each person 

involved (or should I say entity?) being aware of something to 

communicate with. It must have a sense of itself and a sense of 

something more than just itself. If the entity is only aware of itself, all 

will be pointless: it won’t realize there is something to talk to.  

 
Such a being, having a sense of self and something more, I then reasoned, is likely to have a 

sense of not just one thing and two things, but maybe also three things. And four things. And so 

on.  We might both understand the counting numbers: 1, 2, 3, 4, … .   

 
 

 

 

 One thing   Two Things    Three Things 
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I decided that my best bet in communicating with an alien is to assume we each know how to 

count things and thus to communicate via the counting numbers. (You can see how I was led to 

believing that mathematics is universal.) 

So, I decided we should send blips of sound or light out into space, in patterns of different 

counts, to somehow say “Hello! I am here.” 

But what counts of these blips should we send? What pattern of counting numbers would be 

interpreted as deliberate and “intelligent” and as coming from someone trying to 

communicate?  

I decided we should send blips that match the first few prime numbers—2 blips, pause, 3 blips, 

pause, 5 blips, pause, 7 blips, pause, 11 blips, pause, 13 blips, pause, 17 blips, pause, 19 blips, 

pause, 23 blips, pause, 29 blips, pause, 31 blips pause, 37 blips, pause, 41 blips, pause, 43 blips, 

pause, 47 blips, pause, 53 blips, pause, 59 blips, pause, 61 blips, pause, 67 blips. (Maybe that’s 

enough?)  

These numbers are special. They seem random, and 

so are unlikely to be generated by natural 

phenomena in space. But they are not at all random 

when you examine them closely. This sequence of 

numbers would be seen as “intelligent” and like a 

message.    

And this idea of mine, I later realized, is not a bad 

one: several science fiction writers had come up with 

the same suggestion of sending out the sequence of 

prime numbers to grab someone’s attention. 

 

Looking back, it was clear as a young lad I was enamored with mathematics. I could sense 

power to it. I could sense universality to it. And I felt that mathematics went beyond my 

humanness. I found that thrilling, and inspiring, and somehow comforting.  

My young mind could start to see a marvelous journey to be had by simply contemplating 

simple counting. I sensed the power of it.  

I invite you to go on a journey of powerful mathematics with me, right now! It will be mighty 

fun! 
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Question: Do you know what a prime number is? Might you want to learn about prime 

numbers on the internet or talk to a math teacher about them?  

 

Write your thoughts or findings here. 

 

 

 

 

Question: Do you think there could be other civilizations in the universe? If so, might 

there by a better way to try to communicate with them than the ideas I came up with as 

a young lad? 

 

Write your thoughts here. 
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1. A Story that it is not True 
 

Let’s start our mathematical journey together with another story, one that is definitely not 

true! 

 

If you would like to watch videos of me telling this story, check out the James Tanton 
YouTube playlist 
 
PLACE VALUE: The Gateway to Powerful Mathematics (The story of Exploding Dots) 
 
https://www.youtube.com/playlist?list=PLoBaXWXBi2d5pguDculx0vw4aOzkgA1Zw 
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When I was a child, I invented a machine – not true.  

This machine was nothing more than a row of boxes that went as far to the left as I ever 

wanted. For example, here is a machine with five boxes going to the left. But I could have 

drawn 7 boxes, if I wanted, or 100 boxes, or 1007 boxes. 

 

 

  

And, in this untrue story, I gave this machine a name. I called it a “two-one machine” both 

written and read in a funny backwards way. (I knew no different as a child.)  

 

And what do you do with this machine? You put in dots. Dots always go into the rightmost box.  

 

 

Put in one dot, and, well, nothing happens: it stays there as one dot. Ho hum. 
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But put in a second dot – always in the rightmost box – and then something exciting happens. 

 

Whenever there are two dots in a box they explode and disappear – KAPOW! – to be 

replaced by one dot, one box to the left.  

 

(I always make an exploding sound when an explosion like this happens.)  

 

Question 1.1: Do you see now why I called this a “1  2 machine” written in this funny 

way? 

Write your thoughts here. 

 

 

 

 

We see that two dots placed into the machine yields one dot followed by zero dots. I wrote “1” 

for the dot and “0” for the empty space to its right and created the code “10” for the number 

two.  
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Putting in a third dot – always the rightmost box – gives the picture one dot followed by one 

dot. I wrote the code “11” for three. 

 

 

 

 

I realized that this machine, in my untrue story, was giving codes for numbers.  

I had the code 1 and 10 and 11 for the number one, two, and three. 
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Adding a fourth dot into the machine after three dots is particularly exciting: we are in for 

multiple explosions! The 1  2 code for four is 100. 
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The 1 2  machine code for five is 101. 

 

 

And the code for six? Adding one more dot to the code for five gives 110 for six.   

 

We can also get this code for six by clearing the machine and putting all six dots in at once.  

Pairs of dots will explode in turn to each produce one dot, one box to their left.  

Here is one possible series of explosions. (Sound effects omitted!)  

 

Question 1.2: Do you get the same final code of 110 if you perform explosions in a 

different order? (Try it!)  

Did you? 
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Question 1.3: What is the 1  2 machine code for the number thirteen?   
(It turns out to be 1101. Can you get that answer?) 

 

Can you show how to get the code 1101 for the number thirteen? 

 

 

 

 

 

 

 

 

 

 

Here are the 1 2  machine codes for the first ten numbers.   

 

 
Question 1.4:  Do you want to work out the codes for all the numbers up to twenty? (The 
answer can be NO!)  
 

More codes!  
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Challenge 1.5: Which number has code 10011 in a 1  2 machine? 
 

Can you figure it out? 

 

 

 

 

 

 

 

 

There are hours of fun to be had playing with codes in a 1  2 machine.    
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SELF-CHECK 
Would you like to try these three quick questions to check your own understanding?  
(The answer can be no!) 
 

Self-Check 1.1 How many 1s appear in the 1 2  machine code for the number five? 

  
a) One 
b) Two  

c) Three 

d) Four 

  

Self-Check 1.2 Which number has code 1000  in a 1 2  machine? 

  
a) Seven 
b) Eight 

c) Nine 

d) Do I really have to answer this?  

 

Self-Check 1.3 Could a number have the code 1020  in a 1 2  machine? 

  
a) The two dots in a box would explode and make one dot, one place to their left. So … NO! 
b) If you don’t like explosions, I suppose you could leave the two dots there in the one box and not 

explode them. So, YES … maybe?  

c) But most people do choose to do explosions, and so would probably answer NO.  

d) Everything said in a), b), and c) is reasonable. 
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2. Explaining the 1 2  machine 
 

 

 

Don’t forgot the DhiMath interactive version of these notes and the Exploding Dots app to 
play with!  

 

 
 

https://dhimath.org/explodingdots/book.html 
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We set up the 1  2 machine so that  

Whenever there are two dots in any one box, they “explode,” that is, disappear, to be 

replaced by one dot, one place to their left. 

Also, the machine is set up so that dots in the rightmost box are always worth one. 

 

With an explosion, two dots in the rightmost box are equivalent to one dot in the next box to 

the left. And since each dot in the rightmost box is worth 1, each dot one place over must be 

worth two 1s, that is, 2. 
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And two dots in this second box is equivalent to one dot, one place to the left. Such a dot must 

be worth two 2s, that is, worth 4. 

 

 

And two 4s makes 8 for the value of a dot the next box over.  

 

And two 8s make 16, and two 16s make 32, and two 32s make 64, and so on.    

 

Earlier we saw that the 1 2  machine code for the number three is 11. We can now see that 

one dot and one dot in each of the last two boxes does indeed make three: 2 1 3  . Neat!  
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Last section, I gave the challenge of finding the 1  2 machine code for the number thirteen. It 

was hard! Did you try it? Did you get the answer 1101?  

Now that we know how this machine works we can now see—literally see!—that this answer 

1101 is absolutely correct: one 8 and one 4 and no 2s and one 1 does indeed make thirteen. 

Wowza! 

 

13 8 4 1    

Example: Which number has the 1  2 machine code 1010? 

Answer: We can see that the answer is ten. 

 

8 2 10   

 

Question 2.1: We have that 16 1 17  . What then is the 1  2 machine code for the 

number seventeen? 

(If you are playing with the web app, try putting seventeen dots into the machine and 

watch them all explode to get your answer.) 

What’s your answer? (Is it helpful to also draw a dots-and-boxes picture showing seventeen?) 
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Question 2.2: Write the number thirty as a sum of some or all of the numbers 16, 8, 4, 

2, and 1. What is 1  2 machine code for the number thirty? 

Write your two answers here. (Perhaps also draw a dots-and-boxes picture showing thirty?) 

 

 

 

 

Question 2.3: Which number has 1  2 machine code 11001?  
 

What is your answer? 

 

 
 

Question 2.4: What is the  1  2 machine code for the number fifty?  
 

Before you answer this question … Let me mention that Lela answered the previous question 
and saw that twenty-five has code 11001. 

 
She then said, “Well, fifty is double twenty-five” and so she just doubled the number of dots in 
the picture. 

 
 

What do you think of Lela’s approach? Does it lead here to the 1  2 machine code of the number fifty? 
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Question 2.5:  What is the largest number with a five-digit  1  2 machine code? 
That number would have code “11111.” What number is that? 

 
Write your answer here. 

 

 

  
Question 2.6:  What is the smallest number with a five-digit 1  2 machine code? 

 

Write your answer here. 

 

 

 

When Ari answered this question, he first said that that the smallest five-digit code is 00001 , 

which corresponds to the number one. But then he realized that 01  and 001  and 

0000000000001  all represent the number one, and that you can always put zeros in front of a 

code and it won’t affect the number. So, he deduced: 

 People don’t usually write zeros at the beginnings of their codes. 

He then changed his mind and said, “I bet 10000  is the smallest five-digit code.” 

What do you think?  

 Are 101 and 0101and 00101 , for example, all the same number? 

 Do we need extra zeros at the front? Is it ever worth writing them? 

Some space in case you want to write some thoughts.  
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People call the 1  2 codes for numbers the binary representations of numbers (with the prefix 

bi- meaning “two”). They are also called base two representations.  One only ever uses the two 

symbols 0 and 1 when writing numbers in binary.  

Computers are built on electrical switches that are either on, or off. So, it is very natural in 

computer science to encode all arithmetic in a code that uses only two symbols: say 1 for “on” 

and 0 for “off.” Thus, base two, binary, is the right base to use in computer science.  
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Some more practice if you would like. 

 

Question 2.7  Which number has code 10011 in a 1  2 machine? 

Write your answer here. 

 

 

Question 2.8 

 What is the 1  2 machine code (binary code) for the number ? 

 What is the binary code for the number ? 

Write your answers here. 

 

 

 

Question 2.9 Here’s a fun question.  

The codes in the 1  2 machine are called the binary codes of numbers. The prefix “bi” 

means two. Can you guess what each of these English words have to do with the 

number two? 

bicycle   binoculars   bisect    biped  

bivalve (an oyster and a clam are examples of bivalves) 

Write your answers here. 

 

 

 

 

 

 

15
30
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SELF-CHECK 
Would you like to try these three quick questions to check your own understanding?  
 

Self-Check 2.1 A dot in the rightmost box of a 1 2  machine is worth 1. 

 

 
  
What is a dot in the box shown worth? 
 

 
a) One 
b) Two  

c) Three 

d) Four 

e) It is impossible to know.  

 

Self-Check 2.2 The number eighteen equals 16 2 . What is the code for eighteen in a 1 2  

machine? 

  

a) 10001 

b) 10010  
c) 10100  

d) Something else 

e) I prefer not to answer this question.   

 

Self-Check 2.3 Which number has code 11011 in a 1 2  machine? 

 

a) Twenty-seven 
b) Not twenty-seven 
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3. Having Fun with Binary 
 

We saw that dots in the boxes of a 1 2 machine are worth 1, 2, 4, 8, and 16. These are 

numbers that are doubling. (Some people call them the doubling numbers.) 

 

If we drew a sixth box in the machine, a dot there would be worth double sixteen, which is 32. 
Why? Because two dots each worth 16 in the 16 box would explode and make one dot worth 
32, one place to the left. 
 

 

And two dots each worth 32 would explode to make one dot worth 64. 

 

And we can keep on going! 

 

Question 3.1: What’s the value of a dot if we add yet another box to the machine? 

Write your answer here. 
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Question 3.2: What number has code 101101 in a 1 2  machine? 

Write your answer here. (Does drawing a picture help?) 

 

 

 

 

Question 3.3: What number has code 1100100  in a 1 2  machine? 

Write your answer here. 

 

 

 

 

 

Question 3.4: What’s the 1 2  machine code for the number two-hundred? 

Show your thinking, and answer, here. 
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The doubling numbers keep on going forever and get very large, very quickly!  

 

 

 

Optional Challenge 3.5: What is the first doubling number larger than a million? 

If you willing to try this, write your answer here. 

 

 

 

 

Optional Challenge 3.6: What number has code 1111111111 (that’s ten ones in a row) 

in a 1 2  machine?  

 

If you are in the mood to try this, write your answer here. 

 

 

 

 

Optional Extra Hard Challenge 3.7: Is there a doubling number that begins with a 7?  

Is there one?  
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I first showed a 1 2  machine with just five boxes, using the doubling numbers 1, 2, 4, 8, and 

16. 

 

Here’s something fun you can try with five fingers on one hand.  

 

 Write the numbers 1, 2, 4, 8, and 16 on your fingers as shown.  
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Now use your fingers to represent numbers in binary! 

 

 

It’s really fun to run through the numbers 1, 2, 3, 4,5, ..., 30, 31 in turn on your fingers. 

Try it! 

 

 Check this box if it is true. 

 I made all the numbers 1 through 31 in binary on my hand.  
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Optional Question 3.8: What if you used all ten fingers on two hands with the doubling 

numbers 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512? 

How do you make the number five-hundred on your two hands?  

How do you make the number nine-hundred-and-ninety-nine on your two hands? 

What’s the biggest number you can make on your two hands? 

 

Share your answers here.  
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SELF-CHECK 
 
Self-Check 3.1 The doubling numbers are kinda cool. 

 

a) Yes 

b) No 

 

Self-Check 3.2 It’s totally amazing that one can count to 1023 with the fingers on your hands. 

 

a) It is! 

b) It isn’t! 

c) Hang on! What’s this number 1023? 

 

Self-Check 3.3 The binary code for one-thousand-and-twenty-three is 1111111111. (That’s ten ones 

in a row.) 

 

a) Yes it is. 

b) No it isn’t. 
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4. More Machines  
  

Let me continue the story of the machines.  
 
 

If you would like to watch videos of me telling this story, check out the James Tanton 
YouTube playlist 
 
PLACE VALUE: The Gateway to Powerful Mathematics (The story of Exploding Dots) 
 
https://www.youtube.com/playlist?list=PLoBaXWXBi2d5pguDculx0vw4aOzkgA1Zw 
 

 
 

 
 

After playing with the 1  2 machine for a while, I suddenly had a flash of insight. Instead of 

playing with a 1  2 machine, I realized I could also play with a 1  3 machine. Whoa! 
 

Again, this “1  3 “notation is written and read backwards: a “three-one “machine.  
 
  



 
 
 

 

JAMES TANTON 43 

 

Now, whenever there are three dots in a box, they explode away to be replaced with one dot, 
one box to the left.  
 

 
 

 
Question 4.1: Work out the codes for the numbers one, two, three, four, five, and six in 
a 1 3  machine.  Double-check that my list here is correct. 
 

 
 

Am I right? 

 

 

 
Question 4.2 What’s the code for thirteen in a 1 3  machine?  
(Try putting 13 dots in all at one in the rightmost box. Use the web app if you like.) 
 
 

Write your answer here. 
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Question 4.3 Is the code 20142 stable in a 1 3  machine? (The answer is no. If you 
conduct explosions, what’s the stable version of this code?)  
 
 

Write your answer here. 

 

 
 

Question 4.4 The code for sixteen in the 1  3 machine is 121. (Check this!)  

 Amit wrote that the code for sixteen as 0121. Is he also correct? What do you think? 

 

 Shania write the code for sixteen as 1210. Is she also correct? What do you think? 
 

Write your answers here. 

 

 

 

 
 
 

Optional Challenge 4.5 Which number has 1 3  machine code 222 ?  
 

Write your answer here if you choose to try this question.  
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And hours of fun are to be had playing with numbers in a 1  3 machine. 
 
 
But then …  
Another flash of insight! 
 

Instead of doing a 1  3 machine, I realized I could do a 1  4 machine! 
 
And then …  
Another flash of insight!  
 

Instead of doing a 1  4 machine, I could do a 1  5 machine! 
 
And then …  
Another flash of insight!  
 

Instead of doing a 1  5 machine, I could do a 1  6 machine! 
 
And then … 

 

I decided to go wild! 
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SELF-CHECK 
 

Self-Check 4.1 How many dots in a box explode to make one dot, one place to the left, in a 1 4  

machine. 

 

a) Err …. Four!  

 

 

Self-Check 4.2 What’s the code for ten in a 1 5  machine? 

 

a) It’s 20 . 

b) It’s 20 . 

c) It’s 20 . 

d) It’s not 20 . 

 

Self-Check 4.3 Would the code 30721 be stable in a 1 6  machine? 

 

a) No. In the group of 7 dots in the middle, six of them would explode to make one dot, one 

place to the left. 

b) Answer a) is correct. 
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5. The 1 10  Machine 
 

Okay. Let’s go all the way up to a 1  10 machine. Crazy! 
 

If you would like to watch videos of me telling this story, check out the James Tanton 
YouTube playlist 
 
PLACE VALUE: The Gateway to Powerful Mathematics (The story of Exploding Dots) 
 
https://www.youtube.com/playlist?list=PLoBaXWXBi2d5pguDculx0vw4aOzkgA1Zw 
 

 
 

 
And let’s put in 273 dots. Crazier! 
 

What is the secret 1  10 machine code for the number 273?  
 
Here goes … 
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I thought my way through this by asking a series of questions.  
 

Will there be any explosions? Are there any groups of ten that will explode? Certainly!  
 

How many explosions will there be initially? Twenty-seven. 
 

Any dots left behind? Yes. Three. 
 
 
Okay. So, there are twenty-seven explosions, each making one dot one place to the left, leaving 
three dots behind. 

 
 

Any more explosions? Yes. Two more. 
 

Any dots left behind? Seven left behind. 
 

 
 

 
Look at what we have:  
 
 

 The 1 10  code for two hundred seventy-three is … 273.  
 

 
Whoa! 
Something curious is going on! 
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SELF-CHECK 
 

Self-Check 5.1 Draw twenty-four dots in the rightmost box of a 1 10  machine. Do all the 

explosions and see the code “24” appear for the number twenty-four.  

 

a) I tried this and I did get indeed get the code 24 . 

b) I didn’t actually draw it, but I can see in my mind’s eye how this would work and would give 

the code 24 . 

c) I did try it and didn’t get the code 24 , but I will try again. 

 

 

Self-Check 5.2 Draw three-hundred-eighty-two dots in the rightmost box of a 1 10  machine. Do all 

the explosions and see the code “382” appear for the number three-hundred-eighty-two.  

 

a) I tried this and I did get indeed get the code 382. 

b) That’s too much work. I am not going to do that. 

 

 

Self-Check 5.3 If you had to make a guess for the 1 10  machine code for the number one-

thousand, eight-hundred, and forty-nine, what would you guess?  

 

a) 1849 

 

  

 
 

 
 



 
 
 

 

JAMES TANTON 51 
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6. Explaining the Machines 
 
All right. Let’s explain what is going on with everything. 
 
 
 

We already figured out how the 1  2 machine works. Dots in the rightmost box are always 
worth one.  
 

 
 
And as we keep adding dots to the machine, we follow the rule 

 
Whenever there are two dots in any one box, they “explode,” that is, disappear, and are 
replaced by one dot, one place to their left. 
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This means, with an explosion, two dots in the rightmost box are equivalent to one dot in the 
next box to the left. And since each dot in the rightmost box is worth 1, each dot one place over 
must be worth two 1s, that is, 2. 
 
And two dots in this second box are equivalent to one dot, one place to the left. Such a dot 
must be worth two 2s, that is, worth 4. 
 
And two 4s makes 8 for the value of a dot the next box over.  
 
And two 8s make 16, and two 16s make 32, and two 32s make 64, and so on.   
 

 

 

 
 
 
And recall, the code for thirteen is 1101 and we saw this is correct by looking at the values of 

the dots in this machine.  
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Question 6.1: What number has 1  2 machine code 100101? 

 
Write your answer here. 

 

 
 

The same idea must be at play for the 1  3 machine.  
 
Here dots in the rightmost box again are each worth one, but now three dots in any one box are 
equivalent to one dot, one place to the left. We get the dot values in this machine by noting 
that three 1s is 3, and three 3s is 9, and three 9s is 27, and so on.  
 

 
 

 
Question 6.2:  

a) Do three 1s make 3? 
b) Do three 3s make 9? 
c) Do three 9s make 27? 
d) Do three 27s make 81? 

 
Write YES four times in this box. 

 

  
Question 6.3: If one more box is added to the picture of the 1 3  machine, what 
would be the value of a dot in that sixth box? 
 

Write your answer here. 
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Earlier we tried to work out the 1  3 code for the number thirteen. The answer is 111. And 
now we see that this is absolutely correct: one 9 and one 3 and one 1 does indeed make 
thirteen.  
 

 
 

 

The 1  3 machine codes for numbers are called ternary or base three representations of 
numbers. Only the three symbols 0, 1, and 2 are ever needed to represent numbers in this 
system.   
 

Question 6.4: Draw some dots and boxes pictures to show that the 1 3  machine code 
for the number fifteen is 120.  

 (And what do one 9 and two 3s add up to?) 
 

Draw your pictures here. 
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Question 6.5: Put twenty-seven dots in the rightmost box of a 1 3  machine code and 
do all the explosions. You should end up with a single dot in the 27’s place. Do you?  

 
Is it possible to draw some pictures? 

 

 

 

 

 

 

 

 

 

 

 
 

Question 6.6 What number has code 2102 in a 1 3  machine? 
 

Write your answer here. 
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Question 6.7:  a) In a 1  4 machine, four dots in any one box are equivalent to one dot, 

one place to their left. What is the value of a dot in each box? 

 

a) What is the 1  4 machine code for twenty-nine? 

b) What number has 132 as its 1  4 machine code? 

Write your answers here. 
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In a 1  10 machine, dots in the rightmost place are worth 1, and we have that ten ones make 

10, ten tens make 100, ten one-hundreds make 1000, and so on. A 1  10 has ones, tens, 
hundreds, thousands, and so on, as dot values.  
 

 
 
 

The code for the number 273 in a 1  10 machine is 273, and this is absolutely correct: 273 is 
two hundreds, seven tens, and three ones. 
 

 
 

 

In fact, we even speak the language of a 1  10 machine. When we write 273 in words, we 
write 
 

 
 
 
We literally say, in English at least, two hundreds and seven tens (that “ty” is short for “ten”) 
and three.  
 
We call the 1 10  codes for numbers the base ten or decimal representation of numbers.  
 
The prefix dec- means ten and we have, for example that a decagon is a figure with ten sides 
and a decade is a period of ten years. Also, December, at one time, was the tenth month of the 
year. (Care to research of history of how we came up with twelve months for the year and why 
these months have the names they do?)      
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SELF-CHECK 
 

The last self-check had us compute the 1 10  machine codes of the numbers 24, 382, and 
1849 by putting each count of dots in the rightmost box of the machine and conducting (or at least 
imagine conducting) many many explosions.  
 

Now we know what a dot in each box of a 1 10  machine is worth. 
 

 
 
 
 

Self-Check 6.1 Quickly draw dots and boxes pictures of the codes for 24, 382, and 1849 without doing 

any explosions.   
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7. Number Bases in Society 
 
We can write codes for numbers in any machine we choose.  
 

Optional Question 7.1:  Write the codes for the number thirty-one in each of the 

following machines. 

a) A 1 ←10 machine.  

b) A 1 ← 2 machine. 

c) A 1 ← 3 machine. 

d) A 1 ← 4 machine. 

e) A  1 ← 5 machine. 

f) A 1 ← 6 machine. 

g) A 1 ←31 machine. 

 
Write your answers here. 

 

 

 

 

 

 

 

 

 

 
 
These codes are called number bases:  

The 1 2  machine codes are base two (binary) codes, 
The 1 3  machine codes are base three (ternary) codes, 
The 1 10  machine codes are base ten codes, 

and so on. 
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And we noticed that our society likes to speak the language of the base ten machine.  
 
 

 
 

Why do you think we humans chose the 1  10 machine to play with?  
Why do we like the number ten so much for arithmetic and counting? 

 
One answer could be because of our human anatomy: we are born with ten digits on our hands. 
(Thumbs and fingers—and toes too—are called digits.) Many historians believe this could well 
be the reason why we humans have favored base ten. We even call the individual symbols in a 
long number its “digits.” It is not a coincidence we are using the same word.  
 

 
Question 7.2: There are some cultures on this planet that used base twenty for their 
number systems. Why might they have chosen the number 20 do you think? 

 
 

Write your guess here. 
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There is some base-twenty thinking in societies of today. Early American president Abraham 
Lincoln gave a very famous speech called the Gettysburg Address that begins: “Four score and 
seven years ago.”  The word score is an old word for “twenty” and so Lincoln was saying: “four-
twenties and seven years ago.” That’s 87 years.  
 

 

 
 
And, in French, the number 87 is said just this way too: quatre-vingt-sept translates, word for 
word, as “four twenties seven.”  
 

 
 
Ibo, a Nigerian language of the south-east region, says 87 as ogu anon na asaa, which, word-
for-word, translates a “twenty four and seven.” It’s the same idea of thinking of four groups of 
twenty and seven more. 
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Question 7.3 The Maya of the Mayan Civilization of Mesoamerica used a base twenty 
system, but they wrote their numbers vertically. They used dots and bars in their 
number system. Can you make a guess as to how the picture below is meant to be read 
as “four twenties and seven”?  
   

 
 

Write your thoughts here. 

 

 

 

 
 

Question 7.4: Do you know another language? How is 87 said in your language: in a 
base-ten way like English, or in a base-twenty way like French or Ibo or Mayan, or in a 
different way entirely?  
 
 

Have you another language to share here? 
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 Question 7.4 Continued:  
I recently asked on social media how people say “87” in their own languages and 
received so many responses! Most languages seem to use a base-ten system, but not all.  
 

 
 
If you would like to see the document, and contribute to it if your language isn’t already 
there, please go to 

 
https://docs.google.com/document/d/1l4ryknunJ7QR9q953PkmTs2NFHvqqe-
8n8ajYsEv1bw/edit?usp=sharing 
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It seems natural for humans to develop base ten and base twenty number systems (think 
fingers and think toes), but some cultures on Earth actually developed a base-12 number 
system insead. Wow! 
 
And this could be because there is also a very natural way to count to twelve on one hand. We 
have four long digits naturally broken into three segments each and a natural pointer to point 
at them—a thumb!   
 

 
 
 

In fact, in some parts of the world, often in India and south-east Asia, it is common for people 
to count this way to this day.  
 

Question 7.5: Were your brought up to count to 12 on one hand? Were any of your 
friends?  
 
 

Share your answer here. 
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And there is still “twelveness” in our everyday life. 
 

Question 7.6: How many items are in a dozen? 
 

Write your answer here. 

 

 
Question 7.7: How many inches are in a foot? 
 

Write your answer here. 

 

 
Question 7.8: How many hours are in a day? Don’t think night, think day! 
(The first clocks humans built were sundials, which worked only when there was 
sunshine, that is, during the day. People in ancient times weren’t able to measure time 
during the night.) 
 

Write your answer here. 

 

 
Question 7.9: The number twelve is very handy in matters of weights and measures in 
everyday life. For instance, one might not want to purchase a full unit of some quantity, but 
perhaps only a half, or a third, or a quarter of that quantity. (These fractions are common in 
everyday operations.)  
 

 Eggs are sold in quantities of twelve. How many eggs is half a dozen of them? A third 
of a dozen? A quarter of a dozen? Are these nice numbers of eggs? 

 If eggs were sold in quantities of ten (to follow base ten thinking), how many eggs is 
half of that quantity? A quarter of that quantity? A third of that quantity? Do you 
like the answers you are getting? 

 
Write your answer and thoughts here. 
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Question 7.10: I happen to know that Martians have six fingers on each of two hands. 
What base do you think they might use in their society?  

 
 
 

My brain thinks there could be more than one possible answer to this question. What is your brain thinking?  
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The English Language is a Bit of Everything 
 
Even though we do mathematics in a base ten system, English has special words for the first 
twelve numbers. (Have you noticed that? All the names for the numbers 1 through 12 are their 
own special words.) Apparently, we still think twelve-ness is important. 
 
 

 
 
 

After twelve, we fall into a special naming pattern: thirteen, fourteen, fifteen, and so on, up to 
nineteen, using the special suffix “teen.” 
 
But then at twenty, we change to a different pattern. We never use “teen” again and say 
twenty-one, twenty-two, …, thirty-one, …, sixty-one, …, and so on. We stick with a new pattern 
for twenty onwards.  
 
So, we follow a base-10 number system, use special words for the first 12 numbers, use a 
special patten up to 20, and then change to a different pattern for 20 onwards.   
 
English is trying to do it all. That makes English hard and strange! 
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Question 7.11: (These three sets of questions are from Chris Bolognese.) 
 
A. The following are names of numbers in Welsh. 
 
 

11: un ar ddeg  13: tri ar ddeg   14: pedwar ar ddeg 
 

 
a) Can you guess what number is “ddeg”? 

 
b) What numbers are “un”, “tri”, and “pedwar”? 

 
c) What do you think “ar” means? 

 
d) The Welsh for five is “pump”.  Make a conjecture about how to say 15 in Welsh.  

Then do some research to see if you were right. 
 

Write your thoughts here.  
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B. The following are names of numbers in Finnish. 

 
11: yksitoista   13: kolmetoista  14: neljätoista 
 
 

a) What do you think “toista” means in Finnish? 
 

b) Make a guess as to how to say one, three, and four in Finnish. 
 

c) The Finnish word “kaksi” means two.  How might you say twelve in Finnish? 
 

d) The Finnish word for ten is actually “kymmenen”.  How do you think you would 
say twenty?  Do some research to see if you were right. 
 

 
Write your thoughts here.  
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C. The following are names of numbers in Mandarin Chinese. 
 
 
  11: Shí yī  13: Shí sān   14: Shí sì 

 
 

a) What is the word for ten in Chinese? 
 

b) What do you think yī, sān, and sì each mean? 
 

c) The Chinese word for thirty-four is Sān shí sì.   Make guesses for the Chinese 
words for forty, forty-three, and forty-four. 

 

Write your thoughts here.  
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SELF-CHECK 
 
Self-Check 7.1 In English we say “ninety-three’ for the number 93. What number system are we using 
when we say this?  
 

a) Base ten 
b) Base twenty 
c) Base twelve 
d) Something else 

 
Self-Check 7.2 A dialect of Ibo (a Nigerian language) says ihule eno na essa for the number 87. This 
translates as “twenty into four, and seven.” What number system is this dialect using for representing 
this number? 
 

a) Base ten 
b) Base twenty 
c) Base twelve 
d) Something else 

 
Self-Check 7.3 I happen to know that Venutians (beings from the planet Venus) have four fingers on 
each of two hands. What base do you think they might use in their society? 
 

a) If they focus on one hand, perhaps base four. 
b) If they focus on two hands, perhaps base eight. 
c) If they focus on fingers and toes (assuming they have two feet and four toes on each foot), 

perhaps base sixteen. 
d) Everything stated in a), b), and c) is reasonable.  
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8. English is Weird 
 
We noted in the last section that English is a bit strange in how it names and says numbers. But 
the truth is that it is actually down and outright weird! 
 
For starters:  
 

Question 8.1: Have you ever noticed that the spelling of “weird” is weird?  
What happened to “i before e, except after c”? 
 
Can you think if other English words that break the “i before e, except after c” rule? 

 
  

Can you think of one?   

 

 
 
The strangeness of English keeps going.  
 
Here’s the number 273 in a 1 10  machine. It is literally two hundreds, seven tens (ty is short 
for “ten” in English), and three. Nothing too strange there. (Well, “ty” is a bit strange.) 
 

 
 
And here is 263. Nothing strange here either.  
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But listen to the number 253. We should say “two hundred five-ty three” but we don’t. English 
has us say “fifty” instead of five-ty. 
 

 
 
Now saying 243 out loud sounds right, but when writing it out we should write “four-ty,” but 
English insists we write “forty” instead.  
 
Weird!  

 
 

And there is 233 and 223 and 213.  
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Question 8.2: Something additionally strange happens with the number 213. What do 
we say instead of “two hundred onety three”? Does what we say make sense? 

 
Write your thoughts here.  

 

 

 

 

 
 
Question 8.3: When Katya thought about this question, she said that “two hundred and 
thirteen” is really this picture: two hundreds and an extra thirteen dots all in the ones 
place!  
 
What do you think? Are we allowed to have 13 dots in a single box? 
 

 
 

Write your thoughts here.  
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Most people in society think it is silly to have a large number of dots in any single box. You 
would never say “two hundred and twelvety three,” for example.  

 
 

But, of course, we know ten dots in any box explode away to produce one dot, one place to 
their left. So, this number is really 323 in disguise.  
 

 
 
 

Question 8.4: Draw a dots-and-boxes picture of “two-hundred eleventy three.” 
 What number is this? 
 
 

Write your answer here.  
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Question 8.5: Over a thousand years ago people spoke a version of English we today call 
“Old English.” It included words equivalent to twelvety and eleventy.  

 
What number is twelvety?  
What number is eleventy? 
(Would saying “thirteen-ty” be just too silly?) 

 
Write your thoughts here.  

 

 

 

 

 

 
 
But society is inconsistent.  
 

Question 8.6: How do you say the number 12,003 out loud?  
Draw a dots and boxes picture of the number you say. 

 
Draw your picture here.  

 

 

 

 

 

 
  



 
 
 

 

JAMES TANTON 79 

 

The number 12,003 is pronounced “twelve thousand three” as though we have twelve 
thousands and three ones. Here we do allow twelve dots in a box!  

 
 

But we don’t write what we say. Here’s a picture of what we write. 
 

 
 
 

If English and society were consistent, we would say “one ten-thousand two thousand three.” 
But we don’t! 
 
 
What we’re learning here is that society and the English language has all sorts of strange 
demands on how we write and say numbers. The math is always solid and clear. It is just society 
that makes different, and sometimes strange, choices about speaking the math.  
 
 

Question 8.7: Do you know another language? How is 12003 said in your language? 
 

Share your answer here. 
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Question 8.8  Here are four boxes of the 1 10  machine. Let’s put twelve dots in each 

box. (We have 12 thousands, 12 hundreds, 12 tens, and 12 ones.) 

 

 How might you say this number out loud? 

 

 Did you notice as you said this out loud that saying “twelve thousand” sounds 

acceptable to our ear? And saying “twelve hundred” is okay too? Saying 

“twelvety” is odd. But saying “and twelve” sounds okay?  

That is, did you notice that three-quarters of what you said in part a) sounds 

acceptable to our ear? 

 

 What number is 12|12|12|12 really?  

 

 How do you say your answer to part c) out loud? Do you start with  

“One ten-thousand, three thousand, ...”  

 
Write your answers here. 
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SELF-CHECK 
 
Self-Check 8.1 Is English weird? 
 

a) Yes 
b) No 
c) I can’t tell. I know English too well and I am too used to it. Anything that is weird to others 

is normal to me. 
 
Self-Check 8.2 If someone were to say “fifteenty,” which is weird, what number would they be 
communicating? 
 

a) Fifteen tens, which is 150. 
b) Some other number. 

 
 
Self-Check 8.3 What number is “eleven-thousand, eleven-hundred, eleventy, eleven”? 
 

a) 121 
b) 1221 
c) 12221 
d) 122221 
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9. If English is Weird, we can be Weird Too!  ADDITION 
 

Society has given itself permission to be strange in how it says and writes numbers.  
 
I say … let’s go for it! Let’s be a little strange too and see what the math then has to say about 
working with numbers.  
 
Let’s next go through the arithmetic we’ve already learned in school and see how ignoring 
society actually makes the mathematics so much simpler! We can always fix up what we do to 
make society happy at any time. 
  
This is going to be fun! 
 
 

If you would like to watch videos of me telling this story, check out the James Tanton 
YouTube playlist 
 
PLACE VALUE: The Gateway to Powerful Mathematics (The story of Exploding Dots) 
 
https://www.youtube.com/playlist?list=PLoBaXWXBi2d5pguDculx0vw4aOzkgA1Zw 
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We’ll focus on the base-ten place-value system, that is, the 1 10 machine, the one our society 
today likes best.  
 
And let’s start with an addition problem. 

 
Compute 251 ൅ 124.   

 
Such a problem is usually set up this way.  

 
 
And this addition problem is easy to compute: 
 

2 ൅ 1 is 3,  and 5 ൅ 2 is 7, and 1 ൅ 4 is 5.  
 
The answer 375 appears. 

 
 
But did you notice something curious just then?  
 
I worked from left to right—just as I was taught to read. This is opposite to what most people 
are taught to do in a mathematics class: go right to left.  
 

Question 9.1: Does it matter? Compute the problem from right to left instead. Do you 
get the same answer 375?  

 
Why are we taught to work right to left in mathematics classes? 

 
Write your thoughts here. 
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Many people suggest that the problem we just did is too nice. We should do a more awkward 
addition problem, one like 358 ൅ 287. 
 

 
 
Okay. Let’s do it!  
 
Let’s go left to right again:    

 
3 ൅ 2 is 5, and  5 ൅ 8 is 13,  and 8 ൅ 7 is 15.  

 
The answer five-hundred thirteen-ty fifteen appears. (Remember, “ty” is short for ten.)  
 

 
 

And this answer is absolutely, mathematically correct! You can see it is correct in a 1  10 
machine. Here are 358 and 287. 
 

 
 

 
Adding 3 hundreds and 2 hundreds really does give 5 hundreds. 
Adding 5 tens and 8 tens really does give 13 tens. 
Adding 8 ones and 7 ones really does give 15 ones.  
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Five-hundred thirteen-ty fifteen is absolutely correct as an answer – and I even said it correctly. 
We really do have 5 hundreds, 13 tens, and 15 ones. There is nothing mathematically wrong 
with this answer. It just sounds weird.  
 
But, as we realized in the last section, English is inconsistent about what it thinks is weird and 
what it thinks is not. I say, let’s use weirdness to our mathematical advantage and be weird 
when it makes matters natural and easy. 
 

Question 9.2: Can we fix up the strange-sounding answer “five-hundred thirteen-ty 
fifteen” to make society happy?   

 
Any thoughts? 

 

 

 

 

The answer to this question is yes! We can do some explosions since this is a 1  10 machine, 
after all. 

 
Which do you want to explode first: the 13 or the 15?  
 
It doesn’t matter!  
 
Let’s explode from the 13.  
 
  



 
 
 

 

JAMES TANTON 86 

 

Ten dots in the middle box explode to be replaced by one dot, one place to the left. 
 

 
 

The answer six hundred three-ty fifteen now appears. This is still a lovely, mathematically 
correct answer. But society at large might not agree. Let’s do another explosion: ten dots in the 
rightmost box. 
 

 
 
 

Now we see the answer six hundred four-ty five, which is one that society understands. 
(Although, in English, “four-ty” is usually spelled forty.) 
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Question 9.3 Write down the answers to the following addition problems working left 
to right and not worrying about what society thinks!  
 
(For the first four, you I get the answers: 4|6|11, 7|13|8, 4|15|15, and 12|9|6. Do you? 
What do you get for the last two?) 
  

 
 

Write your answers underneath each problem. Perhaps use vertical lines to separate numbers—it usually gets hard 
to read if you don’t. 

 
According to a calculator, what is the answer to each of the six problems? 
 

Do you have enough space above to write those answers in too?  

 
Can you now do explosions to convert each weird answer into the same one the 
calculator says?  
 
(For example, I got that 4|6|11 becomes 4|7|1 after an explosion, which is what my 
calculator says is the answer to the first problem.) 
 

Here’s a lot of space for all this work. 
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The Traditional Algorithm 

How does this dots and boxes approach to addition compare to the standard algorithm most 
people know? 
 
Let’s go back to the example 358 ൅ 287. Most people are surprised (maybe even upset and 
angry!) by the left-to-right answer 5 | 13 | 15. 
 

 
 
This is because the traditional algorithm has us work from right to left, looking at 8 ൅ 7 first. 
 
8 dots and 7 dots makes 15 dots. But the algorithm doesn’t have us write down 15. Instead, we 
explode ten dots right away and write on paper a 5 in the answer line together with a small 1 
tacked on to the middle column. People call this carrying the one and it – correctly – 
corresponds to adding an extra dot in the tens position. 
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Now we attend to the middle boxes.  
 
Adding 5 dots and 8 dots and the 1 extra dot from the previous explosion gives us 14 dots.   
But we perform another explosion right away.  
 

 
 
On paper we write 4 in the tens position of the answer line, with another little 1 placed in the 
next column over. This matches the idea of the dots-and-boxes picture precisely. 
 
And now we finish the problem by adding the dots in the hundreds position. 
 

 
 

 
The traditional algorithm works right to left and does explosions (carries) as one goes along. On 
paper, it is swift and compact, and this might be why it has been the favored way of doing long 
addition for centuries.  
 
The dots-and-boxes approach works left to right, just as we are taught to read in English, and 
leaves all the explosions to the end. It is easy to understand and kind of fun. 
 
Both approaches, of course, are good and correct. It is just a matter of taste and personal style 
which one you choose to do. (And feel free to come up with your own new, and correct, 
approach too!)  
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Question 9.4 Josie doesn’t understand what the little 1s at the top of this long addition 
problem are. Can you explain, in your own way, what they are and what is happening in 
this addition problem?  

 
 

Some space for you. 
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Challenge Question 9.5:   

 
a) When adding two numbers the traditional way, why won’t we ever “carry a 2”? 

 
b) Give an example of adding a three-digit number and a one-digit number that results 

in carrying a 1 exactly two times.  
 

c) Give an example of adding a five-digit number and a one-digit number that results in 
carrying a 1 just one time.  

 
d) Give an example of adding a ten-digit number and a one-digit number that results in 

carrying a 1 ten times.  
 
 

Write your answers here. 
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SELF-CHECK 
 
Self-Check 9.1 If I had 7 tens and 8 tens, then I would have … 
 

a) 15 tens 
b) 1 hundred and 5 tens 
c) Both of these. (They are the same thing!)  

 
Self-Check 9.2 Which of the following are mathematically correct answers to the following addition 
problem? 
 

 
 

a) 7|11|18 
b) 8|1|18 
c) 8|2|8 

d) These are all the same number, really, and all are mathematically correct. (It’s just that 
society doesn’t like a) and b).)  

 
Self-Check 9.3 In which direction do we read English sentences? 
 

a) Left to right 
b) Right to left if I am standing on head but still holding the book upright. 
c) Top to bottom if I am lying sideways on the couch and looking in the mirror at my friend who 

is standing on her head holding a book upside down between her feet. 
d) I am too confused to try to make sense of anything except for answer a), which I know is the 

correct answer. 
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10. Multiplication 
 
 

 

 
Don’t forgot the DhiMath interactive version of these notes and the Exploding Dots app to 
play with!  

 

 
 

https://dhimath.org/explodingdots/book.html 
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Without regard to what society thinks what would be a good—and correct—three-second 
answer to this multiplication problem? 
 

 
 
Can you see that 6 | 21 | 24 |12  is the natural answer to this? After all, if we have 2 dot in the 

thousands place and 7 dots in the hundreds place and 8 dots in the tens place and 4 dots in the 
ones place, and we triple everything, then we’d have 6 thousands and 21 hundreds and 24 tens 
and 12 ones as a result. Easy!  
 

 
 
The answer is “six thousand, twenty-one hundred, twenty-four-ty, twelve.“ 
 

 
 
Now, how can we fix up this answer for society? With some explosions of course! 
 
Let’s do two explosions from the 24 first, say. (It doesn’t matter which explosions we do when). 
It gives  
  6 | 23 | 4 |12  

 
Now maybe explode from the 12. 
 
  6 | 23 | 5 | 2  

 
Now from the 23. 
 
  8352  
 
We have that 2784 3 8352  .  
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Question 10.1 Was that too fast?  
Did you follow me changing the answer 6|21|24|12 into 8|3|5|2? 
 
Try this. 
 

a) What answer does a calculator give for 2784 3 ? Is it 8352? 
 

b) Turn 6|21|24|12 into 8|3|5|2 by doing explosions in a different order. Explode from 
the 12 at the end first. Then explode the explode from the 24 (twice). And then explode 
from the 21 (again twice). Do you get 8352? 

 

  
 
 

Write your answers here. 
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Question 10.2 Compute each of the following without regard to what society thinks. The 
fix up each of your answers to something that society would accept. Feel free to check 
your answers with a calculator. 
  

a) 2784 2  
b) 2784 4  
c) 2784 5  
d) 2784 10  

 
Here’s some space! 
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SELF-CHECK 
 
Self-Check 10.1 Which multiplication problem could give this picture as its answer? 
 

 
 

a) 21132 3  

b) 77777 937  
c) The answer is part a) 
d) The answer really truly is part a)  

 

Self-Check 10.2 What’s 2736 7 ? 
 

a) 14 | 49 | 21 | 35  

b) 14 | 49 | 21 | 42  

c) 14 | 49 | 21 | 49  

d) Something else 
 
 

Self-Check 10.3 Society doesn’t think 14 | 49 | 21 | 42  is a number. Rewrite this as a number society 

would accept. (You should get 19152.) 
 

a) Yes. I did this and got 19152. 
b) I didn’t get 19152 at first. But I kept trying and eventually got it. 
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11. “To Multiply by Ten, Add a Zero.”  Huh? 
 
Here’s a true story this time.  
 
When I was in school, I was told a rule for multiplying by ten: just add a zero. 
 
This rule made no sense to me as stated. To compute 213 10 , for instance, you don’t add 
zero.  
 

 
 

 
Of course, I realized that people meant, “tack a zero to the end of the number.” 
 

 
 
Why does multiplying a number by ten seem to have the effect of appending a zero to the digits 
of the number? Dots-and-boxes thinking explains why.  
 
Here’s the number 213  in a 1 10 machine.   
 

 
 

And here is 213 10 . 
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Now let’s perform the explosions, one at a time. We’ll need the extra box to the left. 
 

 
 
We have that 2 groups of ten explode in the hundreds place to give 2 dots one place to the left, 
and 1 group of ten explodes in the tens place to give 1 dot one place to the left, and 3 groups of 
ten explode in the ones place to give 3 dots one place to the left. The net effect of what we see 
is all digits of the original number shifting one place to the left to reveal zero dots in the ones 
place.    
 
Indeed, it looks like we just tacked on a zero to the right end of 213. But really it is a whole lot 
of explosions that pushed each digit one place to the left to leave an empty box at the very end.  
 

Question 11.1 Did you get what happened here?  
How would you explain to a friend why 22 10  is 220?  
Draw some dots-and-boxes pictures to show what is happening.  
 

A tiny bit of space. 
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Question 11.2 
a) What must be the answer to 476 ൈ  10?  
b) What must be the answer to 476 ൈ  100?  Why?  
 
 

Write your answers here. 

 

 

 

 

 

 

 
 
Question 11.3 
a) What was multiplied by ten to give the answer 3130 ? 
b) What was multiplied by ten to give the answer 978000 ? 
 

 
Write your answers here. 
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SELF-CHECK 
 
Self-Check 11.1 If we do all the explosions in this picture, what final number do we get? 
 

 
 

a) 21211 
b) 212110 
c) 2121100 
d) Something else entirely 

 
 
Self-Check 11.2 Multiplying a number by ten and then multiplying by ten again and then multiplying 
by ten yet again is the same as just multiplying the number by … 
 

a) One hundred 
b) One thousand 
c) One gazillion billion million zillion. (That’s not a real number.) 

 
 
Self-Check 11.3 What number was multiplied by ten and then by ten again to give the answer 4500? 
 

a) 45 
b) 450 
c) 4500 
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12. (OPTIONAL) Long Multiplication   
 
Warning: This is a challenging section. Feel free to skip this one. 
 
People wonder if there is a way to conduct long multiplication with dots and boxes.  For 
example, can we compute 37 23  with them? 
 
There is a way you might first think to do it. It requires you knowing your multiples of 23, that 
3 23 69   and 7 23 161  . 
 

 
 
After you do some explosions (lots of explosions actually), you’ll see that 69|161 is the number 
851. We have that 37 23 851  . 
 
 

Question 12.1: Do you want to do the explosions to see that 69 |161  really is the 

number 851? 
 

The answer can be NO. 

 

 

 
 

Question 12.2 Fill in the question marks. 
 

37 2 6 |14 74               37 11 33 | 77 ?              375 11 33 | ? | ? ?    

 
Write your answers here. 
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Actually, the most natural way to conduct a long multiplication problem like 37 23 is to think 
of areas. For instance, if I asked you to find the area of this rectangle, I’d really be asking you to 
compute 37 23 .  
 

 
 
But the nice thing about rectangles is that we can chop them up into friendlier pieces 

 

 
 
and then work out the areas of the individual pieces. 
 

 
 
I see now that 37 23 600 140 90 21     . And this is indeed . Lovely! 
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Question 12.3: Use rectangles to compute 31 41  and to compute 134 12 . 
 
 

Draw your pictures and find your answers here. 
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Let’s be very clear what we did in this picture of 37 23 . 
 

 
 
We found a piece of the rectangle of area 600 . This came from computing 30 20 . This is 
essentially the same as computing 3 2 6  , but our answer is in the hundreds because we are 
really multiplying 30 , which is 3 10 , and 20 , which is 2 10 . (We twice multiply by ten, hence 
we’re seeing two 0 s in our answer.) 
 
We found a piece of the rectangle of area 140 . This came from computing 7 20 . This is 
essentially the same as computing 7 2 14  , but our answer is in the tens because we are 
really multiplying 7  and 20 , which is 2 10 . (We multiply by ten once, hence we’re seeing one 
0 in our answer.) 
 
We found a piece of the rectangle of area 90 . This came from computing 30 3 . This is 
essentially the same as computing 3 3 9  , but our answer is in the tens because we are really 
multiplying 30 , which is 3 10  and 3 . (We multiply by ten once, hence we’re seeing one 0 in 
our answer.) 
 
And we found a piece of area 21 , which comes from computing 7 3 . 
 

3 7 21

3 30 3 3 10 90

20 7 2 7 10 140

20 30 2 3 10 10 600

 
    
    
     

 

  
Phew!  
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I wasn’t taught any of this when I was in school. Instead, I was taught a strange “long 
multiplication algorithm,” which I can’t really remember, only half-remember.   
 
But look at this. What do you think of my rectangle/dots-and-boxes/half-remembered long-
multiplication mash up here? 

 
 

Do you see the pieces “21” and “90” and “140” and “600”? (This really is doing long 
multiplication. It’s just my chopped up rectangle without the picture of the actual rectangle.) 
 
Do you understand why the answers to 3 7  and 3 3  and 2 7  and 2 3  are written in the 
positions they are? 
 
Do you see that if we add up the four pieces in this table we get 6 hundreds, and 23 tens, and 
21 ones?  (That’s 600 90 140 21   , so it is the total area of the rectangle.) 
 
Do you see that, after explosions, 6 | 23 | 21  is the number 851, the final answer we are meant 

to get? 
 

Question 12.4: There’s a lot to “see” here. Is this making any sense at all? 
 

Some space for some reactions, questions, and/or comments.  
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Question 12.5: Here’s how I computed 23 24  to get the answer 552. 
 

 
 

a) Draw a rectangle chopped up into four pieces that match what you see in this 
multiplication problem. 

b) Why is the “8” you see really eighty? 
c) Why is the “4” you see really four-hundred? 
d) Do you “get” what’s going on in my work? (Is 23 24  really equal to 552 ?) 

 
Lots of space. 
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 Question 12.6:  My calculator says that 3125 832  is 2600000 .  
 Can you get that answer by using my crazy mash-up method?  
 

 
 

Lots of space. 
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SELF-CHECK 
 
Self-Check 12.1 This section was challenging and … 
 

a) I found it really hard, and I didn’t really get it.  
b) I found it really hard, but I was kinda getting it.  
c) Hard? What do you mean? 
d) Hard? I wouldn’t know. This section was marked “optional,” so I didn’t read it. (I am not 

even reading this question.)   
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13. NEW NUMBERS: The Opposites of the Counting Numbers  
  

 

Don’t forgot the DhiMath interactive version of these notes and the Exploding Dots app to 
play with!  

 
 

https://dhimath.org/explodingdots/book.html 

  
 

 
We just did addition and multiplication but skipped over subtraction.  
 
Why?  
 
Because I am someone strange who doesn’t believe that subtraction actually exists. To me, 
subtraction is just addition again: it is the addition of the opposite.  
 
To explain this, I need to tell yet another story that is not true. 
 
Here goes: 
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When I was a young child, I spent my days sitting in a sandbox at the back of my yard. (Not 
true.) And being a very quiet and contemplative child (not true), I would first take my time in 
the mornings leveling out the sand in my box to make a perfectly flat horizontal surface. This 
appealed to my tranquil sensibilities, so much so that I decided to give this level state a name. I 
called it zero. 

 

 
And I spent many an hour admiring my zero state. (Still not true.)  But then, one day, I had a 
flash of insight. I realized I could reach behind where I was sitting, grab a handful of sand, and 
make a pile. I called the one pile 1. 
 

 
And then I discovered two piles – which I called 2 – and three piles, 3 and so forth.  
 
 

 
 
 
I had hours of mathematical fun as I created and admired more and more piles of sand. 
I had discovered the counting numbers.  
 
I also discovered addition for the counting numbers simply by lining up piles. For example, I saw 
that two plus three equals five piles. 
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Question 13.1: Draw a picture of 3 4 5 12   . 

Your answer. 

 

 

 

 

But then, one day I had the most astounding flash of insight of all! Instead of using a handful of 
sand to make a pile, I realized I take away a handful of sand and make the OPPOSITE of a pile, 
namely, a hole! 
 

 
 

Place a pile and a hole together and they cancel each other out and make the zero state. Whoa! 
For this reason, I called a hole opp 1, for the opposite of 1.  And I wrote opp 2 for the two holes, 
opp 3 for three holes, and so on. 
 

 
 
Later in school I was taught to write “െ1” for a hole and say, negative one.  
 

 
I was told to write “ 2 ” for two holes—negative  two—and so on. And I was also told to do 
something called subtraction. But I never really believed in subtraction.  
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My colleagues would read 
 

5 െ 2 
 
for example, as five take away two. But I was thinking of five piles and the addition of two 
holes. A picture shows that the answer is three piles. 
 

 
 
This, of course, gave the same answer as everyone else: the two holes “took away” two of the 
piles. But I had an advantage.  
 
For example, my colleagues would say that  
 

3 െ 5 
 
has no answer: “You can’t take away five things if you only have three to begin with.”   
 
But I saw that 3 5  does have an answer.  
 

3 5    three piles and five holes  
  two holes 

2   
 
Easy! 

 
 

Subtraction is just the addition of the opposite! 
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Question 13.2: Many people would say that 2 6  has no answer.  

But we can think of this as 2 6  . 

How many piles are there? How many holes are there? And when we combine them 

what are we left with? 

Your answer. 

 

 

 

 
 
I came to read a statement like  
 

3 7 4     
 
as “three holes and seven piles equals four piles” and I could see it was true by imagining a 
diagram.  

 
 

Question 13.3: Draw a piles and holes picture for 3 7 4   . 

Your answer. 
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Even though my friends would write 5 2 , for instance, for “five take away two,” I really would 
rewrite it as   
 

5 2    

and think “five piles and two holes”.  
 
 
If a friend wrote 6 9 2 1   , I would rewrite it as  
 

6 9 2 1       

 
and see a lot of piles and holes in my mind.  
 

Question 13.4:  
a) A friend wrote 6 7 1  . How do you think I would rewrite it?  
b) If I wrote 5 1 3 2 1 4        , what do you think my friends wrote? 

c) Can you imagine a picture for each of these two sums? What final value do they each 
have? 

 
Your answer. 

 

 

 

 
Question 13.5 Some people object to writing something like 6 9 2 1     .  I admit, 

it can look confusing. I wish we didn’t use a little dash to denote “opposite.” Perhaps we 
can encourage society to start writing 
 

 6 9 2 1opp opp   ? 

 
Would that be better? 
 

What do you think? 
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SELF-CHECK 
 

Self-Check 13.1 A picture of 1 1 1 1 1 1 1       would have … 
 

a) five piles and four holes, which would combine to leave one pile (1). 

b) four piles and five holes, which would combine to leave one hole ( 1 ). 

c) five piles and four holes, which would combine to leave one hole ( 1 ). 

d) four piles and five holes, which would combine to leave one pile (1). 
e) These answers are all very similar and my brain can’t keep track of which is saying what!  

 

Self-Check 13.2 The subtraction problem 87 33 is really the addition problem … 
 

a) 87 33   (That’s 87 piles and 33 holes.) 

 
 
Self-Check 13.3 One-hundred piles and one-hundred-and-one holes would combine to leave … 
 

a) One pile 
b) One hole 
c) A mess of sand 
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14. DOTS and TODS 
 
Piles and holes are fine and good. But we began this book with a dot.  
 

 
 
A dot perhaps looks like a pile viewed from above. But if we are going to talk about subtraction 
in our dots-and-boxes story, we now need the notion of the opposite of a dot. (A hole is the 
opposite of a pile. What should be the opposite of a dot?) 
 

True Story: When I ask this question to students in countries all over the world, kids 
always tell me the same one answer.  
 
“Draw an open circle for the opposite of a dot, and call it a tod. That’s the word dot, 
backwards.” 
 

 
 
 
Like a pile and a hole, which each annihilate one another when brought together, a dot and a 
tod annihilate – POOF! – when brought together, to leave nothing behind.  
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We can conduct arithmetic with dots and antidots, just like we did with piles and holes.  
 
For example, for 5 3  , which is five dots and three tods, there are three annihilations – POOF! 
POOF! POOF! – to leave behind two dots. 
 
  

 
 

 
For 2 3  , which is two dots and three tods, there are two annihilations—POOF! POOF!—to 
leave one tod. 
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Question 14.1 Here’s a picture of 3 5 , giving the answer 2 . 
 

 
 
 Does this picture make sense to you? 
 

Does it? 

 

 

 
 

Question 14.2 Draw, or just imagine drawing, a dots and tods picture of 1 5  and find 
the value of this quantity. 
 

Your answer. 

 

 

 
 
Question 14.3 Imagine drawing a dots and tods picture of 2000 1000 65  . Can you 
“see” that the answer will be 1065 ?  
 

Can you? 
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SELF-CHECK 
 

Self-Check 14.1 A picture of 1 1 1 1 1 1 1       would have … 
 

a) five dots and four tods, which would combine to leave one dot (1). 

b) four dots and five tods, which would combine to leave one tod ( 1 ). 

c) five dots and four tods, which would combine to leave one tod ( 1 ). 

d) four dots and five tods, which would combine to leave one dot (1). 
e) I feel like I’ve done this question before. 

  
 

Self-Check 14.2 The subtraction problem 87 33 is really the addition problem … 
 

a) 87 33   (That’s 87 dots and 33 tods.) 

b) I really do feel like I did this question before.  
 
 
Self-Check 14.3 One-hundred dots and one-hundred-and-one tods would combine to leave … 
 

a) One dot. 
b) One tod. 
c) This is crazy. I’ve really done all these three questions before.  
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15. Subtraction 
 
Remember, I do not believe that subtraction exists.  
 
 Subtraction is the addition of the opposite. 
 
Let’s play with multidigit subtraction. Consider this subtraction problem.  
 

 
 

To me, this is 536 plus the opposite of 123. 
 

The first number, 536, looks like this in a 1  10 machine: five dots, three dots, six dots.  
 

 
 

To this we are adding the opposite of 123. That is, we’re adding one anti-hundred (one tod to 
the hundreds box), two anti-tens (two tods to the tens box), and three anti-ones (three tods to 
the ones box.  
 

 
 

And now there are a lot of annihilations: POOF! and POOF POOF! and  POOF POOF POOF! 
 

 
 
The answer 413 appears.  
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And notice, we get this answer as though we just work left to right and saying  
 
 

5 take away 1 is 4,  
 
3 take away 2 is 1,  

and   
6 take away 3 is 3.  

 
 
Yes. Left to right again!  

 
 
All right. That example was too nice. How about 512 – 347?  
 

 
 
Going from left to right, we have 
 

5 take away 3 is 2 ,  
1 take away 4 is 3 ,  

and  
2 take away 7 is 5 .  
 

 
 

The answer is two-hundred negative-three-ty negative-five.  
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And this answer is absolutely, mathematically correct!   
 
Here’s five hundreds, one ten and two ones (the number 512) in a 1 10  machine, together 
with three anti-hundreds, four anti-tens, and seven anti-ones (the opposite of 347 ).  
   

 
 

And after lots of annihilations we are left with two actual hundreds, three anti-tens, and five 
anti-ones. 
 

 
 
 

The answer really is “two-hundred negative-three-ty negative-five”! 
 
But, of course, this answer is too strange and weird for society to accept. Can we somehow fix 
up this mathematically correct answer to one that society would accept? 
 

Question 15.1 Think about this for a moment. What can we possibly do to fix this 

answer? 

 

Any ideas? 
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After a moment it might occur to you to unexplode dots. Any dot in a box to the left must have 
come from ten dots in the box just to its right, so we can just unexplode it to make ten dots.  
 

Important Question 15.2: What sound effect should we make for unexploding? 
 

Your Answer. 

 

 

 
 
Okay. Let’s unexplode one of the two dots we have in the leftmost box. Doing so gives this 
picture. 
 

 
 

 
After annihilations, we see we now have the answer one-hundred seventy negative-five. 
Beautiful! 
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Let’s unexplode again. Let’s unexplode a dot from the middle box. 
 

 
 
And with some more annihilations we see an answer society can understand: one-hundred 
sixty-five. 

 
 

If you want to play with dots and tods in a pre-built 1 10 machine go to DhiMath’s 
interactive widget. 

 
https://dhimath.org/explodingdots/book.html 
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Question 15.3: Can you show that “four-thousand, negative-two-hundred, onety, 
negative seven” is really 3803 ?  
 

Show me! 

 

 

 

 

 

 
Question 15.4: My calculator says that 512 347 165  .  
 
Working left to right shows me that 512 367 2 | 3 | 5    .  

Dots-and-boxes show me this too.  
 
Are the two different answers, 165 and 2|-3|-5 actually the same?  
 

 
 

Your thoughts here.  
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 Question 15.5 When Raj saw  

 

he wrote on his paper the following lines. 

 

He then said that the answer has to be 165. 

Can you explain what he is seeing and thinking? 

 
Your thoughts here.  
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Question 15.6: Compute the following two problems in each of the following ways. 

a) Just use a calculator and see what the answer is. 

b) Use a method you were taught in school for doing long subtraction. 

c) Do each problem left-to-right and fix up the answers to ones that society would 

accept. 

 

Hopefully the answers for each problem turn out to be the same!  

 

A question along the way: As you fix up your answers for society, does it seem easier to 

unexplode from left to right, or from right to left? 

 
Your answers here. 
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The Traditional Algorithm 
 
I was taught a method in school for doing long subtraction. I want to see now how the dots-
and-boxes approach compares to it. 
 

Let’s consider again512 347 .  

 
 

The method I was taught has you start at the right to first look at “2 take away 7.”  

But you can’t do 2 7 . (Well, you can: it’s 5 . But you are not to allowed to write this in this 
method!)   
 
So, what do you do?  
 
You “borrow one.” That is, you take a dot from the tens column and unexplode it to make ten 
ones. That leaves zero dots in the tens column.  We should write ten ones to go with the two in 
the ones column.   

 
 

 

But we are a bit clever here and just write 12  rather than 10 2 . (That is, we put a 1 in front of 
the 2 to make it look like twelve.)  
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Then we say, “twelve take seven is five,” and write that answer.  
 

 
 

The rightmost column is complete. Shift now to the middle column.  
 
We see “zero take away four,” which can’t be done. So, perform another unexplosion, that is, 

another “borrow,” to see 10 4  in that column. We write the answer 6 . 
 
 

We then move to the last remaining column where we have 4 3 , which is 1. 
 

 
 

That’s complicated! 
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The truth is that all correct approaches to mathematics are correct. It is just a matter of style as 
to which approach you like best for subtraction.  
 
The standard method has you work from right to left and do all the unexplosions as you go 
along. The dots-and-boxes approach has you “just do it!” and conduct all the unexplosions at 
the end.   
 
Both methods are fine and correct. 
 

 
 
 
 

OTHER METHODS OF LONG SUBTRACTION 
 
We might think our school method for multi-digit subtraction is “standard,” but at other 
times and in other cultures alternative approaches were considered standard.  
If you are feeling brave, can you make sense of the “Equal Additions Method,” the 
“Complementary Method,” and the “Austrian Method” I describe in this video?  
 
 

 
 

https://youtu.be/KJb5nfGvXp0 
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Optional Question 15.7: How might you handle and interpret this subtraction problem? 

 

 

Your thoughts here. 
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SELF-CHECK 
 
Self-Check 15.1 Which of the following is a subtraction problem with final answer 3 | 6 | 2 ? 

 

a) 784 422  

b) 784 424  

c) 784 426  

d) 2395 2037 . (Hang on! There is more than one answer to this problem!) 
 
Self-Check 15.2 The number 3 | 6 | 2  is really … 

 
a) Nonsensical and has absolutely no mathematical meaning. 

b) It’s 34 . (It’s not, but can you guess why someone might think this?) 

c) One unexplosion shows it’s 358 . 

d) It’s 300  and 60  and 2 , which makes 358 . 
 
Self-Check 15.3 Every problem in math must be solved in just one way. Even if you get the right 
answer and all your thinking is logical and correct, it doesn’t matter: there only one way to solve any 
math problem. 
 

a) This is absolute nonsense for sure!  
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16. Division 
 
Archeologists often find artifacts from an ancient past and wonder how they were made. They 
don’t see the process that produced the object, just the end result of the process.  
 
In much the same way, some people like to think of division as the reverse of multiplication. For 
instance, from  
 

3 7 21   
 
we could focus on the answer 21 and ask about the process:  
 

What times 7 made 21?  
 

This would now be considered a division problem and we’d write 21 7 3   after recognizing 

multiplying 7  by 3  is what makes 21 .  
 
Let’s revisit multiplication for a moment to then see if we can follow it backwards to get to 
division.  
 

We’ll start with a straightforward multiplication problem, say, 1302 3  (with answer 3906 ). 
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Here’s what 1302  looks like in a 1 10  machine.  (I’ve colored the dots for fun.) 
 

 
To triple this quantity, we just need to replace each dot in the picture with three dots. We see 

the answer 3906 .  
 

 
 
This is all well and good.  

 
 

 
 
Now let’s go backwards and start with the answer to ask:  
 

Here’s a picture of 3906 . What times three gives this picture? 
 

 
 
We already know the answer is 1302. But what if we didn’t know that? What could we do to 
“undo” this answer?  
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Well, you we can look for triples of dots that must have come from single dots. And we see 
plenty of those.  

 
 

Actually, we see the picture of 3906  is the result of tripling one dot at the thousands level, 
tripling three dots at the hundreds level, and tripling two dots at the ones level. That is, we see 
3906  as the number 1302  tripled. 
 

We have just deduced, from the picture, that 3906 3 1302  !  
 
 
So, to divide a number by three, all we need to do is to look for groups of three in the picture of 
the number. Each group of three corresponds to a dot that must have been tripled.  We can just 
read off the answer to the division problem then by looking at the groups we find! 
 
 
And we can do the same for any single-digit division problem.  
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Question 16.1: Here’s a picture of 426 .  
 

Can you see in the picture that 426 2  must equal 213? (What was doubled to give this 
picture?) 

 
 

Your thoughts here. 

 

 

 

 

 

 
 

Question 16.2: Draw a dots-and-boxes picture of 848 . 

Use you picture to show that 848 4  must be 212 . 
 
How would you explain what is happening to a curious friend?  

 
Your thoughts here. 
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There could be a hiccup in our approach.   
 
Let’s try computing  

416 4 . 

(The answer is going to be 104 .) 
 

We are looking for groups of four—dots that got quadrupled—in a picture of 416 . 
 

 
 

We see one group of four at the hundreds level, and one at the ones level. But no more.  
Hmm. We’re stuck! 
 

 
 
But an unexplosion might help!  
 
Let’s unexplode that single dot in the middle box and make it ten dots in the box to its right.  
 

 
 

 
This allows to see more groups four.  
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All dots are now accounted for.  
 
We have one group of four at the hundreds level and four at the ones level. We see that 
416 4 104  . (That is, 104  was quadrupled to give 416 .) 
 
 
 
 

Question 16.3: Try finding 402 3  with just a dots-and-boxes picture.  
How can you get to the answer 134 ?   

 
Some space. 
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Question 16.4   Use a dots and boxes picture to show that 102 2  equals 51.  
 
 

Some more space. 

 

 

 

 

 

 
 

Question 16.5:   Use a dots-and-boxes picture to show that 100 4  equals 25 . 
 

 
Some working space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

JAMES TANTON 145 

 

Question 16.6 DO THIS ONLY IF YOU DARE 
 
Compute 1000 8  with a dots-and-boxes picture.   
(It might be best, at some point, to just write numbers instead of drawing dots. There 
are going to be a ridiculous number of dots to draw!)  
 

Some space. 

 

 

 

 

 

 

 

 

 

 
 
 

Question 16.7:  We saw that 416 4 104  .  
 
What’s 417 4 ? What does a dots-and-boxes picture show? 

 
Some space. 
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SELF-CHECK 
 
Self-Check 16.1 Genelle did a division problem the dots-and-boxes way and drew this picture. But she 
forgot what the problem was.  
 

 
 
What problem was she solving and what answer did she get for it?  
 

a) a) She computed 6242 2  and got the answer 3141. 

b) b) She computed 3141 2  and got the answer 6242 . 

c) c) She computed 2 6242  and got the answer 3141. 

d) d) She computed 2 3141  and got the answer 6242 . 
 

Self-Check 16.2 Is it possible to compute 10 5  the dots-and-boxes way to get the answer 2 ? 
 
a) a) Yes, it is, and I did it and in my picture I had to do an uexplosion. 
b) b) Yes, it is, but I didn’t do it because I didn’t feel like doing it.  
c) c) Yes, it is, and I didn’t actually do it because I could see in my mind how the picture with an 

unexplosion would work. 
 

Self-Check 16.3 Is computing 452 1 the dots-and-boxes way weird? 
 

a) a) Yes, because anything divided by 1 is just itself. The answer has to be 452 . No work! 

b) b) Yes. But you can do it the dots-and-boxes way by circling groups of 1 in the picture. The 

answer 452 pops out.  
c) c) Same answer as b), except it’s cool, not weird, how the dots-and-boxes method works even 

in an example like this.  
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17. Long Division  
 
Division by single-digit numbers is all well and good. What about division by multi-digit 
numbers? People usually call that long division. 
 
Let’s consider the problem  

276 12 . 
 
(My calculator says the answer is 23.) 
 
Here is a picture of 276  in a 1 10  machine.  
  

 
 
And we are looking for groups of twelve in this picture of 276 . That is, we are looking for what 
got multiplied by twelve to give this picture of 276 .  
 
Here’s what twelve looks like.  

 
 

Actually, this is not quite right as there would be an explosion in our 1 10  machine. Twelve 
will look like one dot next to two dots.  

 
 

This is going to be confusing. We don’t actually see twelve dots, but have to remember there 
really were twelve dots sitting in the rightmost box. An explosion caused some “spillage.” 
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Okay. We are looking for groups of 12  in our picture of 276 .  
 
Do we see any “one-dot-next-to-two-dots” in the diagram?  
 
Yes. Here’s one. 
 

 
 
Within each loop of 12  we find, the twelve dots actually reside in the right part of the loop. 
(Ten dots must have exploded to spill one dot over to the left.)  We have found one group of 12  
at the tens level.  

 
 

And there are more groups of twelve: another one right underneath, and three more one place 
over. (Remember, the twelve dots in each loop are sitting in the right part of the loop.)  
 

 
 
 

This shows that our picture of 276  is actually a picture of 23  each of whose dots was replaced 
by 12 .  We have that 23  was multiplied by 12  to give the answer 276 .  
 

276 12 23  . 
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Question 17.1: Aparna didn’t quite understand why the previous picture shows that 
276 12 is 23 . She is confused by the statement:  

 
“Our picture of 276  is actually a picture of 23  each of whose dots was replaced 
by 12 .  We have that 23  was multiplied by 12  to give the answer 276 .” 

 
Jad decided to redraw the final figure to help her out. This is what he drew. 

 
 
a)  Do you see what Jad did? Do you think this addition to the picture will help Aparna? 
 

What do you think? 
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Jad then went further and added another part to the picture. 

 
 

b) Do you think this helps even more or is it just confusing? What do you think he was 
trying to convey with his final picture? 

 
 

Your thoughts.  
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Let’s compute 3751 31 this dots-and-boxes way. 
 
Here’s a picture of 3751. 

 
 
And here’s what a group of 31looks like. (All 31 dots are in the rightmost bo.)  

 
 
And here are all the 31s I can find in the picture of 3751. 
 

 
I see one at the hundreds level, two at the tens level, and one at the ones level. It must be that 
121 multiplies by 31 to give the answer 3751. 
 
 

3751 31 121   
 

Question 17.2  Is this making any sense to you?  
If the answer is no, can you really pin down which part(s) of this page is confusing and 
try to devise a question you could ask that might help you if answered?   

 
Your response.  
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Question17.3: See if you can compute  
 

2783 23   
 
using dots and boxes. Do you get the answer 121? 
 

Your work.  

 

 

 

 

 

 

 
 
 Question 17.4: 

a) Compute 4473 21 with dots and boxes to get the answer 213 . 
b) Now compute 4473 213 . Do you see the answer 21? 

 
 

Your work.  
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 Question 17.5: SOMETHING TRICKY 
 
Ricky is wondering about 120 10 . He knows the answer is going to be 12 , but he is 
wondering how the dots-and-boxes approach is going to show this.  

 
 He starts by drawing this.  
 

 
 

 
He says he is looking for “one dot next to no dots” and then hunts for them. He thinks 
he’s finding them.  

 

 
 

Is he finding them? Is he getting the answer 12to 120 10 ? 
Is everything he is doing good, and fabulous, and correct? 
 
What do you think? 

 
Your thoughts. 
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Question 17.6 Care to try this one on your own before I do it on the next page? 

31824 102   
(There’s a zero in that “102.”) 
 
 

 
Your work.  
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Okay. Let’s compute 31824 102 . Here’s the picture.   
 

 
 
 
(In the picture of 102 , all one-hundred-and-two dots are sitting in the rightmost position. But 
with many explosions, lots of dots “spilled” over to the left.) 
 
We are looking for groups of one dot–no dots–two dots in our picture of 31824 .   
 
And we can spot a number of these groups and the answer 312  to 31824 102  appears! 

 

 
 

 
Question 17.7: Can you make sense of my picture here? (I found drawing loops to be 
messy, so I drew Xs and circles and boxes instead. Is that okay?) 
 
And do you also see how I circled a double group in one hit at the very end?  

 
 

Your comments. 
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SELF-CHECK 
 
Self-Check 17.1 Genelle did a division problem the dots-and-boxes way and drew this picture. But she 
again later forgot what the problem was.  
 

 
 
What problem was she solving and what answer did she get for it?  
 
a) She computed 4836 12  and got the answer 43 . 
b) She computed 4836 21  and got the answer 43 . 
c) She computed something else entirely.  
 
Self-Check 17.2 Compute 4664 22  the dots and boxes way. What answer do you get? 
 

a) I asked my smartphone the question and it gave me the answer 212 . (Why would I do this by 
hand if I have technology to use?) 

b) I did it the dots-and-boxes way and got the answer 212 . 

c) I did it the dots-and-boxes way and didn’t get the answer 212 . (But now I think I must have 
made a slip. I’ll try it again.) 

 
 
Self-Check 17.3 If I am looking for the pattern “three dots—two dots—one dot” when doing a division 
problem the dots-and-boxes way, I am looking for, in my picture, groups of …  
 
a) 321  
b) Yes. Groups of 321. 
c) Really yes. I must be dividing by three-hundred twenty-one and so am looking for groups of 

three-hundred twenty-one. 
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18. (OPTIONAL) TRADITIONAL LONG DIVISION 
 

This section is completely optional.  

  

 

I remember as a young lad being taught an algorithm for conducting long division.  

 

 

It looked like this. 

 

Example: Compute 276 12 .  

 

Answer:  We see 276 12 23  . 
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And I remember as a young lad being thoroughly perplexed by this algorithm!  

 

Did you learn an algorithm like this one too?  

Can see for yourself what this algorithm is doing?   

Can you explain why it works? 

 

I couldn’t then! But we can now. 

 

Here’s what we did to compute 276 12 . 

 

We drew a picture of the number 276 in a 1 10  machine. 

 

 

And we drew a picture of twelve. It appears as one dot next to two dots, but it is really twelve 

dots in the rightmost box. 
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We looked for groups of twelve in the picture of 276 . 

We first saw two groups among the left two boxes. That is, we first found 2 groups of twelve at 

the tens level. This accounts for two dots in the left most box, and four of the dots in the middle 

box.  

That left three dots still to consider in the middle box and the six in the rightmost box.  

Then we found 3 more groups of twelve at the ones level. 

This accounts now for all the dots in the picture. Zero dots are left over.  

 

 

Now think through the school algorithm. Can you see now that it is actually the same process—

just without the pictures? 

 

The algorithm first identifies 2 groups of twelve at the tens level just 

by looking at the first and second boxes.  

Then the subtraction simply observes that there are 3 dots in the 

middle box unaccounted for after doing this.  

The algorithm then draws our attention to the second and third 

boxes, where we can next see 3 groups of twelve at the ones level 

with no dots are left unaccounted for.   
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Question 18.1: Compute 2756 13  the traditional way and the dots-and-boxes way, at 

the same time, side by side. Can you see they both doing the same thing? 

 

Your work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 
 

 

JAMES TANTON 162 

 

 

 

SPEEDY LONG DIVISION 
 
Here’s a video that shows a fun alternative way to conduct long division! (Fun, if you are the 
sort of person who enjoys doing computations just with pencil and paper.) 
 

 
 

https://youtu.be/sWrjGjM2Vjc 
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SELF-CHECK 
 
Self-Check 18.1 I tried this section and … 
 
a) I kinda got it. 
b) I kinda really didn’t get it. (Perhaps I can talk to someone about it.) 

c) This section was labeled “optional,” so I didn’t actually try it. I am not even reading this 
question. 
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19. Remainders 
 
 

Don’t forgot the DhiMath interactive version of these notes and the Exploding Dots app to 
play with!  

https://dhimath.org/explodingdots/book.html  

 
 
We saw that 276 ൊ 12 equals 23. 

 
 

Suppose we tried to compute 277 ൊ 12 instead. What picture would we get? How should we 
interpret the picture? 
 
Well, we’d see the same picture as before except for the appearance of one extra dot, which 
we fail to include in a group of twelve.  

 
 
This shows that 277 ൊ 12 equals 23 with a remainder of 1.  
 
You might write this as  

277 12 23 1R 
 

 
or with some equivalent notation for remainders. (People use different notations for 
remainders in different countries.)  
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Or you might be a bit more mathematically precise and say that 277 ൊ 12 equals 23 with one 
more dot still to be divided by twelve. 

1
277 12 23

12
  

. 
(And some people might like to think of that single dot as one-twelfth of a group of twelve. All 
interpretations are good!)  

 
 
Question 19.1 Compute 2789 ൊ 11 the dots-and-boxes way. 
 
Do you get a picture like this?  
 

 
 
How do you interpret this picture? 
 

Your work. 
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Question 19.2 Use dots and boxes to show that 4366 ൊ 14 equals 311 with a remainder 
of 12. 
 

Your work. 

 

 

 

 

 

 

 

 

 

 

 
Question 19.3 Use dots and boxes to show that 5481 ൊ 131 equals 41 with a remainder 
of 110. 
 

Your work. 
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Question 19.4 Here are too many division problems you might or might not want to try.  

Just do a few of them, whichever seem interesting to you.  

 

a) Compute 4840 ൊ 4. 

 

b) Compute 721 ൊ 7. 

c) Compute 126 ൊ 6. 

d) Compute 126 ൊ 3. 

e) Compute 126 ൊ 2. 

f) Compute 126 ൊ 1. 

g) Compute 3641 ൊ 11. 

h) Compute 3642 ൊ 11. 

i) Compute 3649 ൊ 11. 

j) Compute 3900 ൊ 12. 

k) Compute 100 ൊ 9. 

l) Compute 1000000000 ൊ 9. 

Lots of space! 
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SELF-CHECK 
 

Self-Check 19.1 This picture shows that 4434 21 equals 211with a remainder of … 
 

 
 
a) 3  

b) 211  
c) There is no remainder. 
 

Self-Check 19.2 It turns out that 444 3 equals 148 . What then is 446 3 ? 

a) It’s still 148. 
b) It’s 148 with a remainder of 1. 
c) It’s 148 with a remainder of 2. 
d) It’s 148 with a remainder of a gazillion. 

 

Self-Check 19.3 What is this picture showing? 

 

a) A happy pony leaping through a field of peonies. 
b) It is impossible to interpret this picture. Who knows what the artist was thinking? 

c) It shows that 31533 101 312   with a reminder of 21. 
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20. Advanced Algebra is not that Advanced, Really. 
 

Here’s a teaser image.  

It shows that the algebra one does in high school is a repeat of the arithmetic we’ve already 

been doing! 

 

 

Some Comments 

Everything we do in human society is based on the number 10. We humans like that number 

because we were born with ten digits on our hands to count with.  

But there is absolutely nothing special about the number ten. We could do of arithmetic in base 

6 or base 12 (Martian), or base 4 or base 8 (Venution), or base 2 (computer), or in any other 

number machine we care to work in. The mathematics is exactly the same! 

Algebra is about doing mathematics in any system whatsoever and not being locked into our 

humanness. (Did you read the introduction to this book? I really do believe that mathematics is 

universal.) And the above picture shows that doing division in base 10 is no different from doing 

division in any weird base: base x . 

The only scary thing here is that people have used the same letter, x , over and over again to 

denote “any old number,” that it has become overused and filled with unnecessary scariness.   

The truth is, there is nothing to be afraid of. We’re doing advanced algebra already.  

The work we’ve been doing just happens to be with the number 10 for x. (We’re human!) But it 

really is mighty fun to play with other possibilities as to what value x could represent.  

Algebra is about just having fun not being locked into our humanness!  
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SELF-CHECK 
 
Self-Check 20.1 What do you think of the picture on the previous page?  

a) It completely freaks me out! 

b) I am intrigued by it. I do see a connection between what is written on the left and what is 
written on the right. 

 

 

 

 
If you want to start playing with some high school algebra right now,  
go to the BONUS MATERIALS near the end of this book!  
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21. Discovering Decimals 
 
Let me go back to thinking about the basic dots-and-boxes machines. Something about them 
has been bothering me all this time.  
 
Recall, no matter the machine, we had boxes going to the left as far as we pleased. 
  

 
 
But that seems awfully lopsided! Why can’t we have boxes going infinitely far to the right as 
well?  
 
Mathematicians like symmetry and so let’s follow suit and now make all our machines 
symmetrical. Let’s have boxes going to the left and to the right.  
 
But the challenge now is to figure out what those boxes to the right mean. 
 
 

If you would like to watch videos of me telling this story, check out the James Tanton 
YouTube playlist 
 
PLACE VALUE: The Gateway to Powerful Mathematics (The story of Exploding Dots) 
 
https://www.youtube.com/playlist?list=PLoBaXWXBi2d5pguDculx0vw4aOzkgA1Zw 
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Focusing on the 1 10  machine. 
 
 
Let’s focus on 1 10  machine and see what boxes to the right could mean for that machine.  
 
To keep the left and right boxes visibly distinct, we’ll separate them with a point. Society calls 
this point—for base ten, at least—a decimal point. (There’s the prefix dec- again!)  
 
 

 
 
 
So, what does it mean to have dots in the right boxes? What are the values of dots in those 
boxes? 
 
Since this is a 1 10  machine, we do know that ten dots in any one box explode to make one 
dot one place to the left.  
 

 
 
So, ten dots in the box just to the right of the decimal point are equivalent to one dot in the 1s 
box.  Each dot in that box must be worth one-tenth. 
 
We have our first place-value to the right of the decimal point.  
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In the same way, ten dots in the next box over are worth one dot in the one-tenth place.  
 

 
 

And so, each dot in that next box over must be worth one-hundredth. 
 

 
 

We now have two place values to the right of the decimal point.  
 
 
And ten one-thousandths make a hundredth, and ten ten-thousandths make a thousandth, and 
so on. 
 

 
 
 
We see that the boxes to the left of the decimal point represent place values given by tens 
multiplied together and boxes to the right of the decimal point represent place values given by 
tenths multiplied together.  
 
We have just discovered decimals! 
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Question 21.1: If the point that separates left and right boxes in a 1 10  machine is a 
called decimal point, what might we call the point that separates left and right boxes for 
a 1 2  machine? 
 

Your answer. 

 

 
 
Question 21.2: Do all cultures use a point to separate boxes?  
 

Your answer. 

 

 
 
When people write 0.3 , for example, in base ten, they mean the value of placing three dots in 
the first box after the decimal point.  
 

 
 

We see that 0.3   equals three tenths: 
3

0.3
10

 . 
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Seven dots in the third box after the decimal point is seven thousandths: 
7

0.007
1000

 . 

 

 
 
 
Some people might leave off the beginning zero and just write .007  rather than 0.007 . This is 
just a matter of personal taste. (You’ll see I’ve already used both styles of presentation.) 
 
 

Question 21.3: Draw a dots-and-boxes picture of two one-hundredths.  
 
 

Your answer. 

 

 

 
 

Question 21.4: What fraction is 0.6 ? 
 
 

Your answer. 

 

 
 

Question 21.5: Some people read 0.6  out loud as “point six” and others read it out loud 
as “six tenths.” Which is more helpful for understanding what the number really is? 
 
 

Your answer. 
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There is a possible source of confusion with a decimal such as 0.31 . This is technically three 

tenths and one hundredth: 
3 1

0.31
10 100

  .  

 
 

 
 
 
But some people read 0.31  out loud as “thirty-one hundredths,” which looks like this. 
 

 
 

Are these the same thing?  
 

Well, yes! With three explosions we see that thirty-one hundredths becomes three tenths and 

one hundredth. And with three unexplosions, we can turn three tenths and one hundredth back 

into thirty-one hundredths. 

Question 21.6: Do you see this? 
 
 

Your answer. 
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Question 21.7   For each picture, write the decimal the picture represents and the 

fraction that that decimal equals. (For example, anwer to part a is 0.009 , which is 
9

1000
.) 

 

Your answers. 

 

 

 

 

 

 

Question 21.8 A school teacher asked his students to each draw a 1 10  machine 

picture of the fraction 
312

1000
.  

 

JinJin drew: 
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Subra drew: 

 

 

The teacher marked both students as correct.  

Are both of these responses indeed valid? Explain your thinking. 

 

Your answers. 
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SELF-CHECK 
 
Self-Check 21.1 The decimal 0.06 corresponds to which fraction? 
 

a) 
6

10
 

 

b) 
6

100
  

 

c) 
6

1000
   

 
d) What’s a decimal? 

 
 
Self-Check 21.2 The decimal .023 corresponds to which fraction?  

(Perhaps drawing a dots-and-boxes picture helps?) 
 

a) 
23

10
 

 

b) 
23

100
 

 

c) 
23

1000
 

 

d) 
23

10000
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Self-Check 21.3 Aparna was asked to compute 22.37 5.841 . She wrote this answer for her teacher. 

 

 
 
Her teacher was confused, so she added this picture to her page.  
 

 
 
Her teacher was still a bit puzzled, but she had an idea now as to what Aparna might be thinking. She 

said “I was expecting to see the answer 28.211 . Does your work lead to that answer?”  
 

What could Aparna do next to show her teacher that 2 | 7 . 11 |11 |1  is indeed the number 28.211  

in disguise?  
 
 

a) She can do some explosions! After all, ten dots in a box are the same as one dot, one place 

to the left. And I checked:  2 | 7 . 11 |11 |1  does indeed become 28.211 . 

 
b) She can do some explosions! After all, ten dots in a box are the same as one dot, one place 

to the left. (I didn’t check that 2 | 7 . 11 |11 |1  becomes 28.211 , but I will.) 
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22. Multiplying Decimals by Ten 
 

The decimal 0.6 is the fraction 
6

10
, and so multiplying it by 10  should give the answer 6 . 

 

 We have 
6

10 1
10

  . 

 This means 10 0.6 6  . 

  

 

 

 

 Question 22.1: Can you explain why 10 0.03 equals 0.3? 

 

This technically a YES/NO question. But it would be lovely if you explain it.  
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Here’s a dots-and-boxes way to explain the previous question.  

 

A picture of 0.03  has three dots in the hundredths place. We want to multiply this quantity by 

ten.  

 

 

 

 

 

This will give 30  dots in the hundredths place. 

 

Three explosions then produce 3dots in the tenths place instead. 

 

And this is the number 0.3 . 

 

We have  

10 0.03 0.3  . 
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 Question 22.2: Use a dots-and-boxes picture to show that 22.37 10  equals 223.7 ?   

 

Some space. 

 

 

 

 

 

 

 

 

 

 

Question 22.3: Can you explain why 22.37 100  equals 2237 ? 

 

Some space. 
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SELF-CHECK 
 

Self-Check 22.1 What is 0.07  times 10 ? 
 

a) It’s really 
7

10
100

 , which is 
7

10
, which is 0.7 . 

 

b) A dots-and-boxes picture of 0.07  has 7 dots in the hundredths place. Multiplying by ten 
gives 70 dots in the hundredths place. Explosions then produce 7 dots in the tenths place. We 

have the answer 0.07 . 
 
c) It is impossible to know what the answer is.  

 

Self-Check 22.2 When we multiplied 22.37 by 10 to get the answer 223.7 , it looks like the decimal 
point shifted to the one spot to the right. Did that really happen? 
  

a) NO! The decimal point did not move. Explosions, instead, make it look like the digits of the 
number are moving one place to the left. 
 

Self-Check 22.3 Should we memorize a rule about how a decimal point “moves” when multiplying a 
decimal by ten? 
 

a) NO! Just visualize the explosions. 

 
 

   
  
 

If you want to see the full mathematics of working with decimals, see chapter 6 here. 
 

https://gdaymath.com/lessons/gmp/9-1-chapter-content/ 
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23. Fractions as Sharing   
 
Some people like to think of division as the act of sharing.  

For example, if I share 6 pies equally among 3 students, each student will receive 2 pies.  

 

 

 

We often write this as  

6 3 2   . 

 

But we could also write this using the notation of fractions. 
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And this is a meaningful thing to do. For example, in this setting, the fraction 
1

2
 represents the 

act of sharing 1 pie equally among 2 students. And we that each student really does get half a 

pie. 

 

 

 

Question 23.1: Here’s a sharing problem: 

20

5  

 How many pies are there? How many students?  

How much pie does each student receive?  

(Do you want to draw a picture of this sharing problem?) 

 

Your answers. 
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Question 23.2: In early grades, we call the fraction 
1

3
 a third. 

Draw a pie-and-students picture of 
1

3
 and show how much an individual student 

receives. Do we indeed call what you drew “a third”?  

 

Your picture and answer.  

 

 

 

 

 

 

 

 

Challenge Question 23.3: Draw a picture that interprets the fraction 
2

3
 as a sharing 

problem. How many pies are there? How many students? Draw a picture of how much 

pie each student gets. 

 

Your picture.  
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SELF-CHECK 
 
Self-Check 23.1 Sharing 60 pies equally among 3 students gives 20 pies per student. We normally 

write this statement as 60 3 20  . But we could also write it as … 
 

a) 
3

60
20

          b) 
60

3
20

          c) 
20

3
60

            d) 
60

20
3

  

 

Self-Check 23.2 The fraction 
1

4
 corresponds to the answer of the division problem 

 
a) 1 4  
 
b) Distributing one pie equally among four students. 
 
c) Someone eating a whole pie for themselves and sharing nothing.   
 

 
Self-Check 23.3 What’s a correct description of this picture? 
 

 
 
 

a) 
8

2
4
        b) 8 4 2         c) 

8
8 4 2

4
        d) The pies are green. (Odd!)  

 
 

 

 
 

If you want to see the full pie-per-student story for fractions, see chapter 5 here. 
 

https://gdaymath.com/lessons/gmp/9-1-chapter-content/ 
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24. Fractions and Division 
 
 
We just set up matters so that a fraction is a number that is an answer to a division problem.  
 

2

3
 is the answer to 2 3 . 

 
1

2
 is the answer to 1 2 .  

 

Moreover, we can compute 1 2 in a 1 10  machine by making use of decimals. The method 
is exactly the same as for division without decimals.   
 
For1 2 we seek groups of two in the following picture. 
 
 

 
 
 
We don’t see any groups of two. So, let’s unexplode. Then we see five groups of two at the 
tenths level. 

 
 
 

We have that 
1

2
is 0.5  as a decimal. (And as a check, 

5

10
 does indeed equal 

1

2
.) 

 



 
 
 

 

JAMES TANTON 191 

 

Question 24.1: Compute 
1

1 5
5
   as a decimal to get 0.2 .  

Some space. 

 

 

 

 

 

Question 24.2: Compute 
1

4
 as a decimal by computing 1 4 . Do you get 0.25? 

Some space. 

 

 

 

 

 

 

Question 24.3: Compute 
1

1 10
10

   as a decimal.  

(Why should you get the answer 0.1 ?) 

Some space. 
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Another example: Let’s write 
1

8
 as a decimal. We need to compute 1 8 in a 1 10  machine. 

 
We seek groups of eight in the following picture. (I won’t draw dots this time and just write 
numbers.) 
 
 

 
 
None are to be found right away, so let’s unexplode. 
 
 

 
 
We have one group of 8, leaving two behind. 

 

 
 
Two more unexplosions. 
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This gives two more groups of 8 leaving four behind.  
 

 
 
Unexploding again  

 

 
 
reveals five more groups of 8 leaving no remainders.  

 

 
 

We see that, as a decimal, 
1

8
 turns out to be 0.125 . 

This is what a calculator shows too.  Super! 
 

Question 24.4: The decimal 0.125  is the fraction 
125

1000
. Is this really the fraction 

1

8
? 

 
Some space. 
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Question 24.5: My calculator says that 
5

8
 is 0.625 .  

Can you show this the dots-and-boxes way too?  

 
Lots of space! 
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Not all fractions lead to simple decimal representations.  
 

For example, consider the fraction 
1

3
.  

 
To compute it, we seek groups of three in the following picture. 

 

 
  
Let’s unexplode. 

 

 
 
 
We see three groups of 3 leaving one behind.  
 

 
 
 
Unexploding gives another ten dots to examine. 
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We find another three groups of 3 leaving one behind. 
 

 
 
 
And so on. We are caught in an infinitely repeating cycle.  
 
 

 
 
 
This puts us in a pickle! As human beings we cannot keep doing something forever.  
 
But it seems very tempting to write 
 

1
0.33333333

3
   

 
with the dot-dot-dot at the end (this symbol of three dots area called an ellipses) representing 
the instruction “keep going with this pattern forever.”  
 
In our minds we can almost imagine what this means. But as a practical human being it is 
beyond our abilities: one cannot actually write down those infinitely many 3s represented by 
the ellipses. 
 
Nonetheless, many people choose not to worry about this and just carry on and say that some 

decimals are infinitely long.  The fraction 
1

3
 is one of those fractions whose decimal 

representation goes on forever. 
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Question 24.6: Are you worried about not being able to do a mathematical process 

forever? Or is it kinda fun to imagine having an infinite number of 3s as part of an 

answer to a math problem?  

 
Your thoughts? 

 

 

 

 
 
 

Question 24.7: Write 
1

1 9
9
   as a decimal. Does it also fall into an infinitely repeating 

pattern? 
 
 
 

Some space. 

 

 

 

 

 

 

 

 
 
 
 
  



 
 
 

 

JAMES TANTON 198 

 

Are you ready for a complicated example?  
 

Let’s convert the fraction 
6

7
 to a decimal. It will turn out to be an infinitely long repeating 

decimal.  
 
Here’s my work. Can you make sense of it? (Perhaps just do the problem 6 7  on your own 
and don’t look at my work.) 
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Do you see, with this 6 in the final rightmost box, that we have returned to the very beginning 
of the problem? This means that we shall simply repeat the work we have done and obtain the 
same sequence 857142 of answers, and then again, and then again.  
 

We have 
6

0.857142 857142 857142 857142
7
  . 

(I think my calculator shows this too.) 
 

 

Question 24.8: Write 
5

5 6
6
   as a decimal. Does it fall into an infinitely repeating 

pattern? 
 

Some space. 

 

 

 

 

 

 

 
 

Question 24.9: Show that 
1

1 11
11

   as a decimal is 0.09090909.... .  

 
Some space. 
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Optional Challenge 24.10: Which of the following fractions give infinitely long decimal 
representations? (We’ve done some of these already.) 
 

 
1 1 1 1 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10 11 12
 

 
Probably not enough space. 
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SELF-CHECK 
 
Self-Check 24.1 This section was a lot of work!  
 

a) I agree! 
 
b) I thought it was fine.  

 
 

Self-Check 24.2 We know 
1

0.33333
3
   . What’s  

2

3
? 

 
a) If you compute 2 3  with dots and boxes you get 0.66666 . 
 

b) It must be 0.66666  because 
2

3
 is double 

1

3
, and double 0.33333  is 0.66666 . 

 
c) Both a) and b) are correct. (And I think answer b was a clever way to avoid work!)  
 

d) Actually, both a) and b) are incorrect and 
2

3
 as a decimal is something else. 

 
 

Self-Check 24.3   
5

7
 as a decimal is  

 

a) 0.712854 712854712854  

b) 0.714285 714285 714285  

c) 0.714258 714258714258 

d) I can’t believe you are making me do this!  
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25. Every Fraction is a Repeating Decimal 
 
We used division in a 1 10  machine to write fractions as decimals. For example, we saw that 
1

8
, computed as 1 8 , has decimal representation 0.125 . 

   

 

 

 

 

 

 

 
 

 
  



 
 
 

 

JAMES TANTON 203 

 

Other fractions have infinitely long decimal representations.  
 

For example, we computed 
1

3
 as 1 3  and got 

 

 
1

0.33333
3
  . 

 
And if you did the last self-check you might have computed  
 

5
0.714285 714285 714285

7
  . 

 
 
People often use a horizontal bar (it’s called a vinculum) to denote a block of digits that is 
repeated infinitely often in a decimal. For example, we write  

 
5

0.714285
7
  

 
and 

 
1

0.3
3
 . 

 

Also, 0.38142  means repeat the group 142 forever after the beginning 38 “hiccup.” 
 

0.38142 0.38142142142142 . 
 
 

Question 25.1:  

a) Write 41.37  as an infinitely long decimal. 
b) Write 534.6012012012012012012  with vinculum notation. 
 

 
Your answers. 
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Question 25.2: Not everyone in the world uses a vinculum to represent a repeated block 
of digits in a decimal representation. Some people use an arc, or parentheses, or dots. 
Can you guess which infinitely long decimal each of these quantities represents? 
 

a) �0.49305  

 

b)  2.35 517  

c) 719.32065783
 

 

 
Your answers. 

 

 

 

 
 

Optional Challenge Question 25.3:  What’s 0.125 0.138 ? 

Some space. 
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All the examples of fractions with infinitely long decimal representations we’ve seen so far fall 

into a repeating pattern. This is curious.  

 
We can even say this is true too for our finite decimal examples: they fall into a repeating 
pattern of zeros after an initial start. 
 

1
0.12500000.... 0.1250

8
1

0.50000.... 0.50
2

 

 
 

 

 

Question 25.4 It seems silly to write 
1

2
 as 0.50000000 . But could we if we wanted to? 

Is it correct to say that there are five tenths, and zero hundredths, and zero 
thousandths, and zero ten-thousands, and so on?   
 

 
 

What do you think?  

 

 

 

 
 
This leads to a big question. 
 

Does every fraction have a decimal representation that eventually repeats? 
 
The answer to this question is YES and our method of division explains why. 
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Let’s go through the division process again—slowly—first with a familiar example. Let’s 

compute the decimal representation of 
1

3
 again in a 1 10  machine. We think of 

1

3
 as the 

answer to the division problem 1 3 , and so we need to find groups of three within a diagram 
of one dot. 
 

 
 
We unexplode the single dot to make ten dots in the tenths position. There we find three 
groups of three leaving a remainder of 1 in that box.  

 
 
Now we can unexploded that single dot in the tenths box and write ten dots in the hundredths 
box. There we find three more groups of three, again leaving a single dot behind. 

 
 
And so on. We are caught in a cycle of having the same remainder of one dot from cell to cell, 

meaning that the same pattern repeats. Thus, we conclude
1

0.333...
3
 . The key point is that 

the same remainder of a single dot kept appearing.  
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Let’s compute the decimal representation of 
4

7
in the 1 10  machine. That is, let’s compute 

4 7  and be sure to take note of the remainders that occur.  
 

 
 
We start by unexploding the four dots to give 40 dots in the tenths cell. There we find 5 groups 
of seven, leaving five dots over. 

 
 
Now unexplode those five dots to make 50 dots in the hundredths position. There we find 7 
groups of seven, leaving one dot over. 
 

 
 
Unexplode this single dot. This yields 1 group of seven leaving three remaining.  

 
 
Unexplode these three dots. This gives 4 groups of seven with two remaining.  

 
 
 
Unexplode the two dots. This gives 2 groups of seven with six remaining. 
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Unexplode the six dots. This gives 8 groups of seven with four remaining. 
 

 
 
But this is the predicament we started with: four dots in a box! 
 
So now we are going to repeat the pattern and produce a cycle in the decimal representation. 
We have    

4
0.571428 571428 571428

7
 . 

 
 
 

Question 25.5 A couple of times now you have been invited to compute the decimal 

representation of 
5

7
. (Feel free to do it now, if you haven’t done it already.) 

Did you get a remainder that repeated?  
What was the value of that first repeated remainder?   
 

 
Some space. 
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Let’s step back and think about things for a moment.  
 

In computing 
4

7
 (and 

5

7
) we were looking for groups of 7  in our dots-and-boxes picture.  

 
There could be, and often are, remainders. But these are only these options for what the 
remainders could be. 
 
 Remainder = 0  or 1 or 2  or 3  or 4  or 5  or 6 . 
 
 
 
 
 

Question 25.6 When looking for groups of seven, why won’t you ever see a remainder 
of 7 ?  Why won’t you ever see a remainder of 8 ? 

 
Your thoughts. 

 

 

 

 

 

 

 
 
 

So, in computing 
4

7
there are only seven possible remainders—0,1,2,3,4,5,6—which means we 

can’t keep doing our work and keep getting different remainders. We are going to have to 
eventually repeat one of them. And as soon as we do, we’re in a cycle!    
 

The fraction 
4

7
simply had to go into a repeating pattern for its decimal representation. 
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In the same way, the decimal representation of 
18

37
 must also cycle.  

 
Imagine a dots-and-boxes picture of 18 37 .  
 
We’d be looking groups of 37 dots.  
 
There are likely to be remainders.  
 
There are only thirty-seven possible remainders: 0, 1, 2, …, 35, 36. 
 
We can’t keep getting different remainders: we must repeat at least one of them. 
 
As soon as we do, we’re in a cycle. 

 
 

Question 25.7 How would you explain that 
21

345
 must have a decimal representation 

that falls into a repeating pattern? 
 

Your thoughts. 
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Question 25.8 Can you see that when we compute 1 4  with dots-and-boxes, we fall 

into a repeated remainder of 0 ? (We get that 
1

0.250
4
 .) 

 
Some space. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
We have just established something amazing! 
 
 

Every fraction has a decimal representation that falls into a repeating pattern. 
(A pattern of repeating zeros is allowed.) 
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Question 25.9 Find the decimal representation of 
23

45
.  

 
(This question isn’t as bad as it looks. After a “hiccup,” its decimal representation 
repeats just one digit over and over again.) 

 
Some space. 
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SELF-CHECK 
 
Self-Check 25.1 The dots-and-boxes approach shows that if you represent a fraction as a decimal, that 
decimal representation is sure to have a repeating pattern. 
 

a) It sure does! 
 

Self-Check 25.2 Hang on! I just worked out 
3

20
 and got 0.15  for its decimal representation. There’s 

no repeating pattern in that. 
 

a) Oh no! All of mathematics has just fallen apart! 
 

b) There is a repeating pattern. It’s a repeating pattern of zeros. Mathematics is safe!  
 

0.15 0.15000000 0.150  . 

 
 
 

Self-Check 25.3 Could the fraction 
8

13
 have a decimal representation with a block of fifteen digits 

that repeat?    
 

a) I don’t know. And I don’t want to compute 8 13 . It’s hard!  
 
b) If I imagine computing 8 13 , I can see that there are only thirteen possible remainders. 
I’d have to start repeating remainders by the fourteenth place, if not before. I don’t have 
fifteen different remainders to get a block of fifteen digits that repeat. 
 
The answer to this question is: NO. 
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26. A Decimal that Does Not Repeat is not a Fraction 
 

We established in the previous section  

 

 Every fraction has a decimal representation that falls into a repeating pattern. 

 
Remember, some fractions have a decimal representation that fall into a repeating pattern of 
zeros. People usually don’t bother writing these repeating zeros and call them finite decimals 
instead.  
 

For example, 
1

0.5
2
  is the infinite decimal  0.50000 0.50 . 

 

And 0.03  is the infinite decimal  0.030000 0.030 . 

 
 
 Question 26.1 Is the whole number 2  a fraction?  
 Does it have a decimal representation?  
 Does it have a decimal representation with a repeating pattern? 
 

Your thoughts.  

 

 

 
 
That every fraction has a repeating decimal representation now opens up a curious idea. 
 
 

A decimal representation that does not repeat  
corresponds to a quantity that is not a fraction! 

 
 
Pause! Do you get the logic here?  
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Question 26.2:  
a) Jozsef believes that “Every crow is a black.” 

You show Jozsef a bird that is not black. Would he say that the bird is a crow?  
 

b) Lana believes that “Every birthday cake has icing.” 
You give her a cake with no icing. Would she deem it a birthday cake? 
 

c) We know that all whole-number multiples of ten end with 0 . 
I see a whole number and doesn’t end with 0 . Can it be a multiple of ten?  
 

d) Every fraction has decimal representation that repeats.  
I see the decimal representation of a number and it doesn’t repeat. Can that number be 
a fraction?  
 
  

Your thoughts.  

 

 

 

 

 
 
For example, consider this quantity.  
 

0.10 1100 111000 11110000 11111000000  

 
It has a pattern in its decimal representation: one 1, one 0 , two 1s, two 0 s, three 1s, three 0
s, and so on. This means we can know any digit of this number by just following the pattern 
long enough.  
 
But the pattern we have is NOT a repeating pattern.   
 
This means that this number is not a fraction! 
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 Question 26.3: Whoa! Pause again! Take this in. 

The quantity 0.10 1100 111000 11110000 is a bit bigger than 0.1 , which is 
1

10
,  and 

so is just to the right of one-tenth mark on the number line.  
 
 

 
 
Yet it cannot be a fraction: it doesn’t have a repeating decimal representation. 
 
There are numbers on the number line that are not fractions!  
 
Do you find this freaky? 

 
 

Your reaction? 

 

 

 

 

 
We can invent all sorts of numbers that can’t be fractions!  
 
For example 
 

 0. 8 0 8 00 8 000 8 0000 8 00000 8 000000 8 

and 
0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14...98 99 100 101 102...999 1000 1001 1002 1003....  

 
are numbers that are not fractions.  
 
People call a number on the number line that is not a fraction an irrational number.   
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Question 26.4: Lucinda says that  
 

0.343343334333433334333334  

 
is an irrational number slightly bigger than a third.  
 
Is she right?  

 
Your answer.  

 

 

 

 

 
 

Question 26.5: Create two numbers that you personally know are not fractions.  
 

Your answers.  
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SELF-CHECK 
 
I learnt in school that between any two fractions lies another fraction.  
 
For example:  

Between 0  and 1, there’s 
1

2
. 

 

Between 1 and 2 , there’s 
1

1
2

. 

 

Between 
1

2
 and 1, there’s 

3

4
. 

 

And 
2

3
fits between 

1

2
and 

3

4
. 

 
 

 
 
 
You can keep finding fractions between fractions. (In fact, the average of any two fractions is a 
fraction right between the two.) 
 
It looks like we can just fill up the entire number line with fractions.   
 

 
 
Let me say that again:  
 

It looks like the entire number line fills up with fractions.  
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But we’ve just proved it doesn’t! 
 
There are numbers on the number line that aren’t fractions –lots of them, in fact! 
 

  FACT: The fractions don’t fill up the entire number line! 
 
 
Whoa!  
 

Self-Check 26.1 Does your brain now hurt? 
 

a) Yes 
b) No 
c) My brain hurts too much to be able to answer this question. 

 
 
I said at the very beginning of this book that I feel like math is goes “beyond my humanness.”  
 
As a human, I feel I know what the counting numbers are. And I think I have a feel for fractions. But 
now we’ve just learned there are even more numbers than just the fractions. And, on top of that, I 
don’t at all have a feel for these new numbers, what they are and how they work. 
 
 

Self-Check 26.2 I said that I find math “powerful” and “inspiring” and “thrilling,” and even 
“comforting” (though I am not sure if I am feeling comforted right now.) 
 
Having gone on this crazy math journey with me playing with counting and arithmetic and 
dots-and-boxes, what are some words that describe how you feel about math right now?  

 
 
 
Final question: 
 

Self-Check 26.3 How awesome are you for having come to the end of this book? 
 
a) Exceptionally incredibly fabulously awesome!   
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BONUS MATERIAL 
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B1. Exponent Notation 
 
We’ve been playing almost exclusively with the 1 10 machine, with dots in boxes worth 1 or 
10  (ten) or 100  (ten tens) or 1000 (ten groups of ten tens!), and so on. 
 

 
 

But we could just as well have been playing in a 1 2 machine, with dots in boxes worth 1 or 

2  (two) or 4  (two twos) or 8 (two fours), etc. 

 

Or with a  1 3 machine with dots in boxes worth 1 or 3  (three) or 9  (three threes) or 27
(three nines), etc. 

 

Or with any other machine. 

 

It helps to have a quick notation for the types of numbers we see as dot values in these 

machines. And, luckily, mathematicians have one. They use superscripts to denote repeated 

multiplication. 
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For example, 210  means “a product of two tens” and 510 means “a product of five tens.” 

 210 10 10   (This is one hundred.) 

 510 10 10 10 10 10     . (This equals 100000 .) 

Similarly, we have 

 72 2 2 2 2 2 2 2       , a product of seven twos. (This equals 128 .) 

 43 3 3 3 3    , a product of four threes. (This equals 81.) 

 

Question B1.1  

a) What is the value of 35 ? 

b) What is the value of 23 ? 

c) What is the value of 33382898363821 ? 

 

Your answers.  

 

 

 

 

 

Question B1.2 What are the values of 22  and 32  and 42  and 52  and 62 and 72  and 82  

and 92  and 102 ? 

Your answers.  
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This notation allows us to write the place values of our machines a little more neatly and 

consistently. 
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B2. Revisiting Division  
 

Back in section 17 we computed 276 12 .  
 
We started by drawing a picture of the number 276 in a 1 10  machine. 

 

 
 
And we drew a picture of the number 12 . It appears as one dot next to two dots, but it is really 
twelve dots in the rightmost box. 

 
 

 
Then we identified groups of  12  in the picture of 276 . And there are plenty of them: two at 
the tens level and three at the ones level. (Remember, the twelve dots appear in the right part 
of each loop: an explosion must have “spilled” one dot over to the left.)  

 
 
 
This shows that our picture of 276  is actually a picture of 23 , each of whose dots was replaced 
by 12 .  That is, we see that 276  as the number 23  multiplied by 12 , and so  
 

276 12 23  . 
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Question B2.1: Do you recall this process? Would you like to practice it by showing that 
27999 132  equals 212  with remainder of 15 ? 

 
 

Some space. 
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B3. Division in Any Base 
 

Let’s now live up to the promise of Section 20. Let’s see that we’re really doing advanced 
algebra right now.  
 
The only thing we have to realize is that there is nothing special about a 1 10 machine. We 
could do all our arithmetic in a 1 2  machine if we desired, or a 1 5  machine, or even a 
1 37  machine. The math doesn’t care in which machine we conduct it. It is only us humans 
with a predilection for the number ten that draws us to the 1 10 machine.  
 
So, let’s now be bold and do our work in all possible machines, all at once! That sounds crazy, 
but it is surprisingly straightforward. 
 
What I am going to do is draw the picture of a machine, but I am not going to tell you which 
machine it is.  It could be a 1 10 machine again, I am just not going to say. Maybe it will be a 
1 2 machine, or a 1 4 machine or a 1 13 machine. You just won’t know as I am not 
telling. It’s the mood I am in!  
 
Now, in school algebra there seems to be a favorite letter of the alphabet to use for a quantity 
whose value you do not know. It’s the letter 𝑥. Always the letter x . (It’s a weird obsession.) 
 

Question B3.1: What can you find on the internet about why the letter x is the favored 
letter to represent an unknown quantity in mathematics? (Watch out! There are 
multiple thoughts, theories, and combinations of details. Don’t fully believe the first 
explanation you encounter.) 
 
 

What did you find? 
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So, let’s work with an 1 x machine with the letter 𝑥 representing some number whose actual 
value we do not know.  
 
 

Following section B1, the place values of boxes in an 1 x  machine will be 1 and x  and 2x  

and 3x , and so on.  
 

 
 
 
As a check, if I do tell you that x  actually is 10 in my mind, then the values 1, 𝑥, 𝑥ଶ, 𝑥ଷ, …  
match the numbers 1, 10, 100, 1000, …, which is correct for a 1  10 machine. 
  
If, instead, I tell you that 𝑥 is really 2 in my mind, then the values 1, 𝑥, 𝑥ଶ, 𝑥ଷ, … match the 

numbers 1, 2, 4, 8, …, which is correct for a 1  2 machine. 
 

This 1  𝑥 machine really is representing all machines, all at once! 
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Okay. Out of the blue! Here’s an advanced algebra problem.  
 
 

Compute      22 7 6 2x x x    . 

 
Whoa! 
 
 
 STEP 1: Deep breath! This does look scary, so take a deep breath. 
 STEP 2: Do Something!  
 
 
We can at least draw a picture for the challenge using dots and boxes.  
 

Here’s what 2𝑥ଶ ൅ 7𝑥 ൅ 6 looks like in an 1  𝑥 machine. It’s two 𝑥ଶs, seven 𝑥s, and six ones.  
 

 
 
And here’s what 𝑥 ൅ 2 looks like.    

 
 
The division problem ሺ2𝑥ଶ ൅ 7𝑥 ൅ 6ሻ ൊ ሺ𝑥 ൅ 2ሻ is asking us to find copies of 𝑥 ൅ 2 in the 
picture of 2𝑥ଶ ൅ 7𝑥 ൅ 6. 
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And we can find them! 

 
 
 
I see two copies of 𝑥 ൅ 2 at the 𝑥 level and three copies at the 1 level. The answer is 2𝑥 ൅ 3. 

 
We have been here before! 
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What’s going on?   
 
Suppose I told you that 𝑥 really was 10 in my head all along.  

 
Then 2𝑥ଶ ൅ 7𝑥 ൅ 6 is the number 2 ൈ 100 ൅ 7 ൈ 10 ൅ 6, which is 276.  
 
And 𝑥 + 2 is the number 10 + 2, that is, 12.  
 
So, we just computed 276 ൊ 12 and got the answer 2𝑥 + 3, which is 2 ൈ 10 ൅  3 ൌ  23. 

 
That is, if I do announce that  𝑥 was 10, then we just repeated a school arithmetic problem. 
 
 
 
But if I tell you that 𝑥 is actually, instead, 2 in my mind, then 
 

 2𝑥ଶ ൅ 7𝑥 ൅ 6 ൌ 2 ൈ 4 ൅ 7 ൈ 2 ൅ 6, which is 28,  
 
 𝑥 ൅ 2 ൌ 2 ൅ 2, which is 4,  
and 
 2𝑥 ൅ 3 ൌ 2 ൈ 2 ൅ 3, which is 7,       

 
and we’ve just ascertained that 28 ൊ 4 = 7, which is correct! 
 
 

Doing division in an 1  𝑥 machine is really doing an infinite number of division problems all in 
one hit.  
 
Whoa! 

 

Question B3.2 What is    22 7 6 2 2 3x x x x       saying if x  is 5 ? 

 
 

Your answer. 
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Question B3.3: Compute  
 

ሺ2xଷ ൅ 5xଶ ൅ 5x ൅ 6ሻ ൊ ሺx ൅ 2ሻ  
 

in an 1  x machine. (You should get the answer 2xଶ ൅ x ൅ 3.) 
 
 If I tell you x is 10 in my mind, can you see that this matches 2256 ൊ 12 = 213? 

 

Your answer. 

 

 

 

 

 

 

 

 

 

Quantities expressed in an 1  𝑥 machine are called polynomials. They are just like numbers 

expressed in base 10, except now they are “numbers” expressed in base 𝑥. (And if someone tells 

you 𝑥 is actually 10, then they really are base 10 numbers!) Work in polynomial algebra is just a 

repeat of school arithmetic.   
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Question B3.4   Draw 3 22 3 1x x x    in an 1 x  machine.   

Add 3 23 7 4 1x x x    to the picture. 

What, then, is    3 2 3 22 3 1 3 7 4 1x x x x x x       ? 

 
If x  is the number 10  throuout all this, what ordinary arithemetic problem have you 
conducted? 

 

Your answer. 

 

 

 

 

 

 

 

Question B3.5  What do you think    2 25 4 9 2 6x x x x      equals?  

What does this translate to if x  is 10 ? 

Your answer. 
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Question B3.6 Kennedy drew this picture. She was working on a division problem. 

 

a) If this is a picture of a division problem in a 1 10  machine, what division 

problem is she conducting and what is its answer? 

b) If this is a picture of a division problem in an 1 x  machine, what division 

problem is she conducting and what is its answer? 

Your answer. 
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Question B3.7 

a)  Compute ሺ2xସ ൅ 3xଷ ൅ 5xଶ ൅ 4x ൅ 1ሻ ൊ ሺ2x ൅ 1ሻ. 

b)  Compute ሺxସ ൅ 3xଷ ൅ 6xଶ ൅ 5x ൅ 3ሻ ൊ ሺxଶ ൅ x ൅ 1ሻ. 

If x is 10 in both these problems what two division problems in ordinary arithmetic have 

you just computed? 

Your answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 
 

 

JAMES TANTON 237 

 

Question B3.8 

a) Show that ሺxସ ൅ 4xଷ ൅ 6xଶ ൅ 4x ൅ 1ሻ ൊ ሺx ൅ 1ሻ equals xଷ ൅ 3xଶ ൅ 3x ൅ 1. 

b) What is this saying for x ൌ 10? 

c) What is this saying for x ൌ 2? 

d) What is this saying for x equal to each of 3, 4, 5, 6, 7, 8, 9, and 11? 

 

Your answer. 
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Challenge Question B3.9 Washington state middle-school teacher David Buitenveld 

shared with me an idea for solving some equations using an 1 x  machine.  

Can you make sense of his approach from this picture he shared? 

 

Your thoughts. 
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50. A Problem! 
 
Okay. Now that we are feeling really good about doing advanced algebra, I have a confession 
to make. I’ve been hiding a problem. A serious problem! 
 
I’ve been choosing examples that only use dots.  What about tods?  
 
Consider, for example,  
 

   3 3 2 2x x x    . 

 

Here’s what we have in an 1  𝑥 machine. 
 

 
 
We are looking for one dot next to two dots in the picture of 𝑥ଷ െ 3𝑥 ൅ 2.  But we don’t see 
any!  
 
What can we do besides weep a little?  
 
Do you have any ideas?  
 
Maybe you are thinking to unexplode one of the leftmost dots. That is a great idea! It really 
is. But it has a snag: we don’t know the value of 𝑥 so we don’t know how many dots to draw 
when we unexplode. Bother!  
 
We need some amazing flash of insight for something clever to do. Or maybe polynomial 
problems with negative numbers just can’t be solved with this dots-and-boxes method. 
 

 Question B4.1 What do you think? Have you a flash of insight? 

Thoughts? 
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B5. Resolution 
 
We are stuck on computing the following.  
 

   3 3 2 2x x x     

 

We have this 1  𝑥 machine picture. 
 

 
 

 
 
We seek copies of 𝑥 ൅ 2—one dot next to two dots—anywhere in the picture of 𝑥ଷ െ 3𝑥 ൅ 2. 
But we don’t see any!  
 
And we can’t unexplode dots to help us out as we don’t know the value of 𝑥. (We don’t know 
how many dots to draw when we unexplode.)  
 
The situation seems hopeless at present.  
 
But I have a piece of advice for you, a general life lesson in fact. It’s this: 
 

 
IF THERE IS SOMETHING IN LIFE YOU WANT … MAKE IT HAPPEN!   
(And deal with the consequences.)  

 
 
Right now, is there anything in life we want?  
 
Look at that single dot way out to the left. Wouldn’t it be nice if we had two dots in the box 
next to it, to make a copy of 𝑥 ൅ 2? 
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So, let’s just put two dots into that empty box! That’s what I want, so let’s make it happen! 

But there are consequences: that box is meant to be empty. And in order to keep it empty, we 
can put in two tods as well!  
 

 
 

 
Brilliant! 
 
We now have one copy of what we’re looking for. 

 
 
But there is still the question: Is this brilliant idea actually helpful? 
 
Hmm.  
 
Well. Is there anything else in life you want right now? Can you create another copy of 𝑥 ൅ 2 
anywhere? 
 
 
I’d personally like a dot to the left of the pair dots in the rightmost box. I am going to make it 
happen!  
 
I am going to insert a dot and tod pair. Doing so finds me another copy of 𝑥 ൅ 2. 
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This is all well and good, but are we now stuck? Maybe this brilliant idea really just isn’t helpful. 
 
Ooh! But stare at this picture for a while. Do you notice anything? 
 
Look closely and we start to see copies of the exact opposite of what we’re looking for! Instead 
of one dot next to two dots, there are copies of one tod next to two tods. 

 
Whoa!  
 
And how do we read the answer? We see that ሺ𝑥ଷ െ 3𝑥 ൅ 2ሻ ൊ ሺ𝑥 ൅ 2ሻ is 𝑥ଶ െ 2𝑥 ൅ 1. 
 
Fabulous! 
 
 
So actually, we can do all polynomial division problems with this dots-and-boxes method, even 
ones with negative numbers. 
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Question B5.1 Try computing    4 1 1x x   .  Can you get the answer 3 2 1x x x   ?  

 
  
Some space. 

 

 

 

 

 

 

 

 

 
 

Question B5.2 Show that    6 21 1x x    equals 4 2 1x x  .  

 
Some space. 
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Question B5.3: Play with    4 3 2 24 7 10 4 2 1x x x x x x        to see that it equals 

24 3 3x x   with a remainder of 2 1x   yet to be divided by 2 1x x  . 

People typically write this answer as follows, using a fraction notation for division. 

4 3 2
2

2 2

4 7 10 4 2 2 1
4 3 3

1 1

x x x x x
x x

x x x x

    
   

   
. 

 

Some space. 
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Question B5.4 If you can do this problem—written with fraction notation for division—

you can probably to any polynomial division problem! 

4xହ െ 2xସ ൅ xଷ ൅ xଶ ൅ x െ 2
xଶ െ x ൅ 1

 

(You should get the answer 3 24 2 2x x x   .) 

 

Some space. 
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Optional Challenge Question B5.5 SOMETHING WILD!  

Use an 1 x  machine to compute  

1

1 x . 

Here we are being asking to divide the simple polynomial 1, which is just a single dot  

 

by 1 x  which looks like this, one tod and one dot. 

 

Is it possible to do this division problem? 

 

Some space. 
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SOLUTIONS  
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SOLUTIONS 
1.1 My notation “1 2 ” is trying to show that two dots in a box change into one dot, one place to the 

left. Do you think my notation is okay? 

 

1.2 You do get the same code no matter when you choose to do particular explosions. 

 

1.3 It really is 1101. Put thirteen dots in the rightmost box of a machine and try to be neat and careful 

about erasing pairs of dots, replacing each pair with a dot one place to their left. (It is easy to get 

messy and lose track of what is happening!)  

 

1.4 They are: 

 

1.5 10011 is the number nineteen. 

2.1  It’s 10001. 

2.2  30 16 8 4 2     and it’s code is 11110. 

2.3  It is the number 16 8 1  , which is twenty-five. 

2.4  We have 50 32 16 2    and it’s code is 110010. (This is the same as what you get in taking Lela’s 

picture and doing all the explosions!)  

2.5 11111 corresponds to the number 16 8 4 2 1    , which is 31. 

2.6  Ari’s reasoning is good and the smallest five-digit code is10000 . This the code for sixteen.  

2.7 10011 is the number 16 2 1 19   . 

2.8   15 8 4 2 1     and has code 1111. 

 30 16 8 4 2     and code 11110 . 

2.9  A bicycle is a vehicle with two wheels; Binoculars are viewing devices with two lenses; To bisect 

something is to cut it into two equal parts; A biped is a creature that walks on two legs; A bivalve is a 

mollusk with shells composed of two parts. 
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3.1  128 

3.2 32 8 4 1 45     

3.3 64 32 4 100    

3.4 It is 11001000 . 

3.5 1,048,576  

3.6 It’s 1023. 

3.7 There is! The first one is the forty-seventh number in the list of doubling numbers:  

70,368,744,177,664 . 

3.8  

500 has code: 111110100. 

999 has code 1111100111. 

The biggest number you can make is 1111111111 which corresponds to 1023 . 

 

4.1 My codes are all correct. (Phew!) 

4.2 Thirteen is 121. 

4.3 There are three dots among the four in 20142 that would explode to make the code 20212. (What 

number is this?)  

4.4 a) Amit is correct, that there are zero dots in the fourth box to the right when you work out the code 

for the number sixteen. Writing 0121 is technically correct. So too is writing 00121 and 00000121. It’s 

just that most people don’t bother writing zeros in the front of the codes. They are not helpful. 

b) Alas, Shania is incorrect. The code for sixteen really does have 1 dot in the rightmost box, 2 dots the 

next second-right box, and 1 dot in the third rightmost box. The code can’t be 1210.  

4.5 It’s twenty-six. 

6.1 It’s thirty-seven. 

6.2  Yes Yes Yes Yes 

6.3 243  
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6.4 You really do get 120 .        
 

6.5 You do indeed end up with one dot in the 27’s place. A dot there really is worth twenty-seven 1s. 

6.6 It’s sixty-five. 

6.7  a) Boxes have the following values:  

 
b) The number twenty-nine has code 131 in a 1  4 machine.  
 
c) Thirty. (This is one more than the code for twenty-nine!) 

 
7.1  . a) 31  b) 11111  c) 1011   d) 133   e) 111    f) 51    g) 10 
 

Did you notice that thirty-one has codes that are just a string of ones in base 2 and base 5? (It’s 
also a string on ones in base 30. Do you see why?) Can you find a number which has codes a 
string of ones in four different bases?  

 
7.2 They were likely thinking of fingers AND toes! 

7.3 In the Mayan system a dot represents 1 and a bar represents 5. So, we see in the picture four dots 

(4) on top of two dots and a bar (7). This is four twenties and seven. 

 

7.4 Please do look at the document and contribute to it if your language is missing. 

7.5 Do you count to twelve this way? 

7.6 12 

7.7 12 

7.8 The first clocks humans used were indeed sundials, which, of course, work only during daylight 

hours. The ancient Egyptians divided the day into ten main hours and two extra twilight hours—early 
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morning and early evening. With the invention of water clocks and mechanical clocks people could start 

measuring time during the night as well. Since the day was divided into 12 hours, they divided the night 

into 12 hours as well. This is why we, today, say “There are 24 hours in a day.” But this is really coming 

from “There are 12 hours in, literally, a day.” 

7.9 A half of 12 and a third of 12 and a quarter of 12 are all nice whole numbers. (6,4, and 3). But a half, 

third, and a quarter of 10 are getting into very unfriendly numbers! (Well, a “half of 10” is okay—it’s 

five—but the other two aren’t so nice!) 

7.10 If Martians focus on one hand, they might go with base six. But, if like humans who focus on two 

hands, they might go base twelve. And if they are thinking fingers and toes (do they have six toes on 

each of two feet), they might go base twenty-four.  

7.11 

A a)  ddeg is 10            b)  1, 3, 4            c)  ar  means “and.” 
    d)  15 is actually Pymtheg, not “Pump ar ddeg” like you’d expect. 
 
B a)  toista possibly means “and ten.”       b)  1 = yksi, 3 = kolme, 4 = neljä          
    c)  12 = kaksitoista 
    d) 20 is kaksikymmentä, which is sort of like “2 tens.” 
 
C a) Shí means ten.        b)  1 = yī, 3 = sān, 4 = sì 
   c)     40 = Sì shí [4 10 
        43 = Sì shí sān [4 10 3] 

44 = Sì shí sì [4 10 4] 
 

8.1 I thought of “foreign.”  

8.2 We say “two hundred and thirteen” or “two hundred thirteen.” We do say that there are two 

hundreds, we don’t say that there is one ten, but we do say there is an extra thirteen to go with the two-

hundred. It’s a bit confusing!  

8.3 Katya is right. What we are saying is her picture. But then, we normally expect ten dots to explode to 

become one dot, one place to the left. So, what we say is different from what we do!  

 

8.4 The number 2|11|3 is the number 313. 
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8.5  “Twelvety” is twelve tens. That’s 120. 
“Eleventy” is eleven tens. That’s 110. 
“Thirteenty,” if you were to say it, is thirteen tens. That’s 130. 

 
8.6  

 
 
8.7 I would love to know how this number is said in other languages. Do people say “one ten thousand, 

two thousand, and three” or do they say “twelve thousand, and three,” or something else? 

8.8 a) Twelve-thousand twelve-hundred, twelvety, twelve. 

b) Indeed. The only part of this that sounds weird in English is “twelvety.” 

c) It’s 13,332. 

This read as “thirteen-thousand, three-hundred, thirty, two.” We don’t say “one ten-thousand, three-

thousand, three-hundred, threety, two” as we should! 

9.1 You get the same answer if you go right to left. Perhaps this problem is too nice. Doing a trickier one 

might show that going left-to-right is a problem? 

9.2 If you keep reading, you’ll see I answer my own question on that page. 

9.3      148 323 4 | 6 | 11 471                                   

567 271 7 |13 | 8 838    

377 188 4 |15 |15 5 | 5 |15 565             

582 714 12 | 9 | 6 1 | 2 | 9 | 6 1296     

310462872 389107123 6 | 9 | 9 | 5 | 6 | 9 | 9 | 9 | 5 699569995    

87263716381 18778274824 9 |15 | 9 |13 |11| 9 | 8 |10 |11|10 | 5 ... 106041991205     

 

9.4 Can you copy the explanation I gave on the previous pages? Do you have a better explanation? 
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9.5 a) The largest sum one computes in a column of two numbers is 9+9, plus maybe a 1 from a previous 

explosion, giving 9+9+1=19. This requires carrying only a 1.  

b) 199 + 9, for example, works. 
 
c) 10009+2, for example works. 
 
d) 9999999999+1 works. 

 

10.1 You really do get 8352. 

10.2  

a) 2784 2 4 |14 |16 | 8 5568    

b) 2784 4 8 | 28 | 32 |16 11136    

c) 2784 5 10 | 35 | 40 | 20 13920    

d) 2784 10 20 | 70 | 80 | 40 27840    

 

11.1 Do you feel you can explain it? 

11.2 a) 4760   b) 47600. Multiplying by one hundred is the same as multiplying by ten (which gives 4760) 

and then by ten again (which gives 47600). 

11.3 a) 313 10 3130      b) 97800 10 978000   

12.1 69|161 really is 851. 

12.2 My pictures are not drawn to scale. Does that matter? 
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12.3 

37 11 33 | 77 40 | 7 4 | 0 | 7 407                 

375 11 33 | 77 | 55 4125    

 

12.4 Is it making some sense? 

 

12.5 

a) We have 23 24 400 60 80 12 552      . 

 

b) The “8” is really 4 20 80  . It’s eight tens. 

c) The “4” is really 20 20 . It’s four hundreds. 

d) Are you starting to see that we’re just using rectangles without drawing rectangles? 

 

12.6 I got it! 

 

13.1  
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13.2 Two piles and six holes combine to leave four holes: 2 6 4    . (Can you draw a picture of 

this?) 

13.3 

 

13.4   

a) and c) 6 7 1    . This is six piles and seven holes and one hole. It gives two holes, that is, 2 . 

b) and c) 5 1 3 2 1 4     . This is five piles and one hole and three piles and two holes and one hole. 

They leave four piles.  

13.5 I personally wish we didn’t use a little “negative sign” for the opposite numbers. I think it is just 

confusing! (Or is that just me?) 

14.1 Do you see that three dots annihilate with three tods to leave just two tods behind? 

14.2  In a picture of one dot and five tods there would be just one annihilation—POOF!—to leave behind 

four tods: 1 5 4    . (Can you draw the picture?) 

14.2 One thousand tods would “cancel” a thousand of the 2000 dots. We’ll be left with 1000 65  dots. 

15.1 Read on!  

15.2 Is it possible to describe a sound effect in words? 

15.3 

 

15.4 They really are. Here are the unexplosions to do:  

 2 | 3 | 5 1| 7 | 5 1| 6 | 5      

(A dots-and-boxes picture would help. Can you draw one?) 
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15.5 I am guessing that Raj realizes that the 2 in 2|-3|-5 is really 200, the -3 is really -30, and the -5 is, 

well, -5. So, the answer is 200-30-5, which is 165. 

15.6 

6328 4469 2 | 1 | 4 | 1

1 | 9 | 4 | 1

1 | 8 | 6 | 1

1 | 8 | 5 | 9 1859

    
  
 
 

                 

78390231 32495846

4 | 6 | 1 | 0 | 5 | 6 | 1 | 5

4 | 5 | 9 | 0 | 5 | 6 | 1 | 5

4 | 5 | 8 |10 | 5 | 6 | 1 | 5

4 | 5 | 8 | 9 | 5 | 6 | 1 | 5

4 | 5 | 8 | 9 | 4 | 4 | 1 | 5

4 | 5 | 8 | 9 | 4 | 3 | 9 | 5

4 | 5 | 8 | 9 | 4 | 3 | 8 | 5

45894385


     
    
    
   
  
 



  

I personally find it much easier to do the unexplosions from left to right. 

 

15.7  The answer is  5 | 3 |1  , which  is -500 and -30 and 1, which makes  529 . (Is this what a 

calculator gives?) 

Or, maybe you might say that 5 | 3 |1   is the opposite of 5 | 3 | 1 (which is 529 ). So, the answer is 

529 . 

 

 

16.1 
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16.2 

 

16.3 

 

 

16.4 

 

16.5 I am starting to get tired of drawing dots.  

 

16.6 Can you see what I am doing here as I hunt for groups of eight? 
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16.7  We see that 417 4 104  with a remainder of 1. 

 

17.1  

a) Jad first shows that each loop is really a set of 12 dots. It’s an explosion from that group of 12 that 

spills a dot over one place (leaving two dots behind). 

b) Jad is now trying to show that each group of 12 is really coming from a single dot that got multiplied 

by 12. In fact, it is each dot in a picture of 23 that got multiplied by 12. That is, a picture of 276  is really 

a picture of 23  that got multiplied by 12 . 

17.2 Really do try to find the specific parts that confuse you. And really do try to think of a question to 

ask about each of these parts. (Sometimes just doing this is enough to make things “click.” And if not, 

now you know what to ask a friend or a teacher.)  

17.3 

 

17.4 

a)  
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b) 

 

17.5 Everything Ricky has done is absolutely beautiful and correct.  

17.6 Read the next page after you try. 

17.7 Can you make sense of it? Perhaps drawing loops over my picture will help. 

18.1 Hopefully, by doing the two different methods of calculation side by side, you are starting to see 

how they are doing the same thing. 

19.1 We see 2789 ൊ 11 = 253 with a remainder of 6. That is, 2789 ൊ 11 ൌ 253 ൅ ଺

ଵଵ
. 

19.2 4366 ൊ 14 ൌ 311 ൅ ଵଶ

ଵସ
. 

 

 

19.3  5481 ൊ 131 ൌ 41 ൅ ଵଵ଴

ଵଷଵ
.  
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19.4  

a) 4840 ൊ 4. This equals 1210. 

b) 721 ൊ 7. This equals 103. (One needs to unexplode two dots.) 

c) 126 ൊ 6. This equals 21. (Unexplode one dot.) 

d) 126 ൊ 3. This equals 42. (Unexplode one dot.) 

e) 126 ൊ 2. This equals 63. (Unexplode one dot.) 

f) 126 ൊ 1. This equals 126. (There is one group of one at the hundreds level, two at the tens level, and 
six at the ones level!) 

g) 3641 ൊ 11. This equals 331. 

h) 3632 ൊ 11. This equals 331 with a remainder of 1, or 
1

331
11

. 

i) 3639 ൊ 11. This equals 331 with a remainder of 8, or 
8

331
11

.j) 3900 ൊ 12. This equals 325. (I got 

efficient with my loops.)  

 

 

k) 100 ൊ 9. This equals 11 with a remainder of 1, or 
1

11
11

. 

l) 1000000000 ൊ 9. This equals 111111111 with a remainder of 1, or 
1

111111111
9

. 
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21.1 I don’t think there is a name for such a point in other bases. But for a base-two machine perhaps 

“bimal point” would be a good thing to call it? 

 

21.2 Many countries in the world use a comma instead of a point! (And where we use commas to 

separate groups of three digits, they use points! For example, “twelve-thousand, three-hundred thirty 

three point two” is written 12.333,2.) 

21.3  

 

21.4 It’s 
6

10
, six tenths. (Which happens to be the same as 

3

5
.) 

21.5 Saying “six tenths” is saying what it really is. That seems better to me. 

21.6 I hope you do. 

21.7 a) 
9

0.009
1000

     b) 
26

0.26
100

   (two unexplosions)    

c) 
3007

0.3007
10 000

  (I imagined a lot of unexoplosions here!)  

 

21.8 Both are indeed correct. You need to do some explosions or unexplosions to see that one is the 

same as the other.  

22.1 Now 0.03  is 
3

100
. Multiplying this by ten gives 

3

10 10
10

3

10
 , which is 0.3 . 
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22.2  

 

After explosions, this is  

 

 

22.3 Multiplying 22.37  by one-hundred is the same as first multiplying it by 10  to get 223.7 , and then 

multiplying that by 10 , which would give 2237 . (One can draw a dots-and-boxes to show that 

223.7 10 is 2237 .) 

23.1 20 pies are being shared equally among 5 students to give 4 pies per student.  

23.2 Each student really does get a third of the pie, just as we were taught what a third is in early 

grades.  
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23.3 Two pies for three students gives each student a third of a pie, twice, That’s two-thirds!  

 

24.1 
1

0.2
5
  

 

24.2 
1

0.25
4
  

 

24.3 The decimal 0.1  is 
1

10
.  So, of course, 

1
1 10

10
  , has to give 0.1 . (And it does!)  
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24.4   
125 25 5 25 5 5 5 1 5 1

1000 200 5 200 40 5 40 8 5 8

  
     

  
. 

 

24.5 

 

24.6 I am curious about your thoughts here. 

24. 7 
1

0.111111
9
 . (Hopefully you see this in a dots-and-boxes picture.) 

24.8  
5

0..866666
6
  .  (Hopefully you see this in a dots-and-boxes picture.) 

24.9  

 

 

24.10 The fractions 
1

3
, 

1

6
, 

1

7
, 

1

9
, 

1

11
, and 

1

12
 have infinitely long decimal representations that repeat.  

25.1 a) 41.3737373737  b) 534.6012  

25.2  a) 0.49305       b) 2.35517  c) 719.32065783  
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25.3 It’s 0.2635089 . 

 

 

25.4 Despite being silly, it is correct.  

25.5 You first repeat a 5. 

25.6 You won’t have a remainder of 7  because you are looking for group of seven and that is one! 

You won’t have a remainder of 8  because you are looking for group of seven and there is a group of 

seven within that eight. (You’d get a remainder of 1, instead.) 

25.7 

Imagine a dots-and-boxes picture of 21 345 .  
 
We’d be looking groups of 345 dots.  
 
There are likely to be remainders.  
 
There are only 345 possible remainders: 0, 1, 2, 3, …, 344, 345. 
 
We can’t keep getting different remainders: we must repeat at least one of them. 
 
As soon as we do, we’re in a cycle. 
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25.8 

 

25.9   
23

0.51
45

  

 

26. 1 It is. It’s the fraction 
2

1
. (Sharing two pies among one student gives the one lucky student two 

whole pies!)  

Its decimal representation is “ 2 ” and this is the same as 2.00000 2.0 . It has repeating zeros.  

 

26.2 No, No, No, and No. 

 

26.3 I find this freaky!  

 

26.4 She is (assuming the pattern she indicates keeps happening). 

It is a number without a repeating decimal pattern and it is bigger than 0.3333333333 , which is one 

third.   

 

26.5 I bet you can do it! Just write down an infinitely long decimal that is clear to anyone who looks at it 

that it does not have a repeating pattern.  
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B1.1 a) 5 5 5 125     b) 3 3 9       c) 1 1 1 1 1      

B1.2 4,8,16,32,64,128, 256,512,1024 . 

B2.1 

 

B3.1 Indeed. What did you find? 

B3.2 We have that 22 7 6x x   is 2 25 7 5 6    , which is 91. 

And 2x   is 5 2 , which is 7 . 

And 2 3x   is 2 5 3  , which is 13 . 

So    22 7 6 2 2 3x x x x       is saying this time that 91 7 13  , which is true! 

B3.3 Did you get it? 

B3.4 

 

Adding these together gives 3 24 9 7 2x x x   . 

For 10x   we are saying: 1231 3741 4971  . 
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B3.5 Don’t forget tods! 

 

We get 33 3 3x x  . 

For 10x  we are saying that 549 216 333  . 

 

B3.6. a) It’s 2541 21 121                b) It’s    3 2 22 5 4 1 2 1 2 1x x x x x x         

 

B3.7. a) 3 2 2 1x x x               b) 2 2 3x x   

If 10x  , we computed 23541 21 1121   and 13653 111 123  . 
 
 
B3.8. You can do it!  

For 𝑥 ൌ 10 it says 14641 ൊ 11 = 1331  

For 𝑥 ൌ 2 it says 81 ൊ 3 = 27  

For 𝑥 ൌ 3 it says 256 ൊ 4 = 64 

For 𝑥 ൌ 4 it says 625 ൊ 5 = 125  

For 𝑥 ൌ 5 it says 1296 ൊ 6 = 216  

For 𝑥 ൌ 6 it says 2401 ൊ 7 = 343  

For 𝑥 ൌ 7 it says 4096 ൊ 8 = 512 

For 𝑥 ൌ 8 it says 6561 ൊ 9 = 729  

For 𝑥 ൌ 9 it says 10000 ൊ 10 = 1000  

For 𝑥 ൌ 11 it says 20736 ൊ 12 =1728  

B3.9  In an 1 x machine we don’t actually know how many dots to draw when we do an unexplosion. 

But in the picture, we can deduce what x  has to be. 

B4.1 Read on! 
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B5.1 B5.2 B5.3 B5.4 All the answers are given in the questions. Keep at it. Try to get those answers.  

B5.5 This one is indeed wild. It is an infinitely long answer. You get that 
1

1 x
 is  

 
2 3 41 x x x x     . 

 

 

 

[Can you now work out 
2

1

1 x x 
?] 

 

 


