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Are All U-Shaped Graphs Quadratic? 
 

Teaching Guide 
UPPER MIDDLE SCHOOL/HIGH SCHOOL 

 
 
1. Some U-Shaped Graphs 

Student Handout 
2. Gravity and Galileo’s Insight 
3. Sequences – For when you Trust Patterns. (But please don’t trust patterns!)   

Two Student Handouts  
4. Projectiles, Parabolas, and non-Parabolas 

Student Handout  
5. Debunking Patterns 

Student Handout 
6. Fitting Quadratics to Data 

Student Handout 
7. Aside:  Personal Polynomials 

Student Handout 
   

BONUS MATERIAL 
8. Sequences – For When You Really Do Trust Patterns  

Two Student Handouts 
9. Aside: Theoretical Proofs 

 

Video Resource 
Access videos of Garden Paths lessons at  https://gdaymath.com/courses/gmp/. 

 

Student Handouts 
All practice problems, and solutions, in an accompanying document.  
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Are All U-Shaped Graphs Quadratic?: Overview   
Student Objectives 
Students develop, with sound understanding, numerical techniques for determine whether 
or not a set of data or a given graph of a curve is quadratic. If there is an a priori reason to 
believe a particular data set follows a certain pattern, students can also use those techniques 
to find a formula for that data. 

The Experience in a Nutshell 
Students are often led to believe that a goal in mathematics work is to find a pattern with the 
implicit message that patterns should be trusted. Algebra students are also implicitly led to 
believe that curves that look like they could be quadratic are quadratic. After all, the only U-
shape curves studied in a standard algebra curriculum are quadratic curves and examples of 
non-quadratic curve are never displayed. 

In this experience we bring into question whether all graphs of curve that look “U-shaped” 
actually are quadratic. We explore some historic roots to this study through the work of 
Galileo, before embarking on a robust study of integer sequences and the consequence of 
constant-differences patterns they seem to follow. If the patterns can be trusted, we present 
a technique for finding formulas for these sequences.  

An aside explores the ancient Greek definition of a parabola and links that notion to the non-
obvious claim often implicitly made that graphs of quadratic curves are parabolas. 
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Lesson 1: Some U-Shaped Graphs 
One of the first—usually the first—non-straight-line graph one encounters in school is the 
graph of a quadratic equation.  One starts by drawing the graph associated with the quadratic 
equation 2y x=  to see a beautiful symmetrical U-shaped curve. 

 

 

Just to be clear, the graph of an equation is a plot of all the data points that make the given 
equation a true sentence about numbers. For example, choosing 2x =  and 4y =  makes 

2y x=  a true number sentence, but choosing 3x =  and 7y =  does not. So we plot the point 

( )2,4  as part of the graph of 2y x= , but not the point ( )3,7 . 

And the graph of 2y x=  is indeed beautifully symmetric. The points ( )2,4−  and ( )2,4  both 

appear on the graph, as do the points ( )3,9−  and ( )3,9 ,  and ( ),π π−  and  ( ),π π , for 

instance. We have a U-shaped graph with a vertical line of symmetry. 
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Practice 1: Is the term “U-shaped” actually correct for the shape of the 2y x=  graph? After all, 
the sides of the letter U are vertical. Is the graph of 2y x=  ever vertical? 

 

(All solutions to practice questions appear at the end of this guide.)  

 

I’ll continue to use the phrase U-shaped curve or U-shaped graph even if it is technically not 
correct. Let’s simply understand that I am referring to the shape of a quadratic equation graph.   

 

These U-shaped graphs are full of surprises. Here’s one. 

 

Practice 2: Suppose we tilt the graph of 2y x=  (well, rotate it, actually) counterclockwise about 
the origin just 0.01 . Does the y -axis intercept this tilted graph at some large non-zero value? 

 

Again, the solutions to all these practice problems appear at the end of this guide. But let me 
help you out with this question right now as it seems extraordinarily tough to answer.  
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Mathematicians are also human and get scared by questions and math challenges too. But one 
technique they often employ when faced with a question they don’t first know how to answer 
is to change the question!  

What’s the scariest part of this question? It’s tilting the U-shaped graph. How does one actually 
do that? I don’t personally know! So, let’s tilt something else instead. What if we keep the 
graph of 2y x=  the same and tilt the vertical axis 0.01  clockwise instead? Does this titled line 
intersect the U-shape graph? 

 

Oh! Hang on! Is this equivalent to answering the original problem? 

 

 

Here’s the biggest surprise of these U-shaped graphs of all. Many people seem to miss this 
shocker when they first study quadratic equations.  

  

Practice 3: The graph of 2y x=  is a symmetrical U-shaped curve. The graph of 2y x= , on the 
other hand, is not! It is a straight line through the origin with anti-symmetry if you like—the 
data plot rises to the right as it decreases to the left.  
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Now for a weird question: What picture would be obtain if we “added” these two graphs? 

 

What could we mean by this? 

Let’s look at each x  value and add their matching y  values. For example: 

For 1x = , we’ll add ( )21  and ( )2 1  and get 3 . 

For 2x = , we’ll add ( )22  and ( )2 2  and get 8 . 

For 10x =  we’ll add ( )210  and ( )2 10  and get 120 . 

That that is, we are plotting the graph of the equation 2 2y x x= + . 

 

It is clear as that as we put in larger and larger positive x  values, we are getting higher and 
higher points. The graph rises upwards as we move to the right. (Maybe in a straight line? 
Maybe in some curved way?) 
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Things are more interesting to the left for negative x  values: the graph of 2y x=  has data 
points with positive heights in this region, but the graph of 2y x=  has points of negative 
heights here. We’ll be adding together positive and negative heights. Will they cancel out and 
give zero heights? Will the positives heights “beat” the negative ones and give an overall graph 
of positive height? Or will the negative heights “win”? 

 

 

Do plot the graph of 2 2y x x= + . Make a table of data values that give true number sentences 
and plot those data points. Consider enough of them to get a good sense of the shape of the 
graph. You are in for a surprise! 

 

The surprise is that it is another perfectly symmetrical U-shaped graph just positioned at a 
different place in the plane. STUNNING and SHOCKING! 

In fact, adding together any basic quadratic expression 2y ax=  and a linear expression 
y bx c= +  is sure to give an expression whose graph is the same symmetrical U-shaped graph, 

maybe flattened or steepened a bit, and maybe shifted to a new position in the plane.  

 

This is just astounding!  

That U-shape is astonishingly robust and one cannot help but be transfixed by its robustness. 
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Of course, one can explain why this graphing phenomenon holds by analyzing the algebra of 
quadratic equations. But hopefully you were equally shocked by this phenomenon when you 
first started learning to graph quadratics.   

Comment: If you are looking for a review of quadratics, their algebra and their graphs, full of all 
the surprises and shocks, see www.gdaymath.com/courses. 

 

Now to the issue we’ll explore in these notes.   

How ubiquitous are these U-shaped curves from quadratics? 

Are the U-shaped curves we see in all sorts of contexts basically the same U-shape, (maybe, as I 
said, just steepened or flattened a bit and moved or even turned upside-down perhaps)? Are 
these curves so robust so as to be universal in nature? 

For example, school physics tells us that the path of a thrown object follows the arc of a 
quadratic graph. Is that true? How do we know? 

 

 

Famous Italian mathematician and physicist Galileo Galilei (1564-1642) wondered about the 
shape a chain hanging between two poles makes. (We see this shape in hanging power lines, in 
the shape of ropes that surround sculptures in art museums, and so on.) Is this the same 
quadratic U-shape? How could we know?  
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Greek scholars of ancient times used geometry to describe all sorts of special curve. They called 
one of their curves a parabola and it too is U-shaped.  

c  

Algebra wasn’t invented for another 800 years or so and so these scholars did not ask: Is this 
curve given by a quadratic equation? But we can! So, is it? How could we know? 

 

Is the famous St. Louis Gateway Arch in Missouri of the United States in the shape of a 
quadratic curve? 
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Is the graph of the equation that spells my nickname, JIM, quadratic? This curve passes through 
the points  

1x = , 10y =  and the 1st letter of my name is the 10th letter of the alphabet, J; 

2x = , 9y =  and the 2nd letter of my name is the 9th letter of the alphabet, I; 

3x = , 13y =  and the 3rd letter of my name is the 13th letter of the alphabet, M. 

 

 

Let’s answer all these questions—and more! We’re in for a cool adventure!    
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Lesson 2: GRAVITY and GALILEO’S INSIGHT 
Many scholars of ancient times, including Aristotle (ca. 350 BCE), believed that heavier objects 
fall through the air with faster acceleration than lighter objects. It is hard to detect whether or 
not this is true with real-life experimentation. 

Try dropping a lacrosse ball and a tennis ball (they are close to the same size) 
simultaneously from the same height. Can you tell if one hits the ground before the 
other? 

Nonetheless, it does seem reasonable to suspect that gravity has a “greater effect” on heavier 
objects causing them to speed up faster than lighter objects when they fall. Many scholars 
reasoned this.  

But Galileo from the 1500s questioned this reasoning.  

He said to imagine two objects of the same size and shape, but of different masses, being 
dropped from the Leaning Tower of Pisa at the same time. If gravity has stronger effect on the 
heavier object, then it would land first, taking the shorter amount of time to reach the ground.  

Now attach a very light string between the two objects, ostensibly making them one object 
which is of greater mass than either individual object. Gravity then should have an even 
stronger effect on this system. So the two linked objects dropped from the Tower should fall to 
the ground in shorter time still. But how do the two objects now “know” they are attached as 
one object and should fall faster? This doesn’t make sense! 

Galileo concluded then that all objects of the same size and shape must fall through the air in 
unison, at the same shared rate of acceleration, irrespective of their masses. (Air resistance 
causes objects to fall at different rates according to their shapes: a sheet of paper is slower to 
fall than a paper-clip of the same mass, for instance. But it is not gravity causing this variation.) 

Letters and biographies about Galileo written at and near the time say that he considered going 
to the top of the Leaning Tower of Pisa to drop and time falling objects so as to verify that their 
accelerations to the ground were in unison. But there is no evidence to suggest that he actually 
did this. (But he did mimic the experiment by rolling objects down ramps. Their slower motion 
made is possible to time their rates of descent due to gravity.) 

Aside: In 1971, Apollo 15 Commander David Scott while walking the surface of the 
Moon performed a live television demonstration in which he simultaneous dropped a 
hammer and a feather to see if, in the absence of an atmosphere, they would indeed 
accelerate to the ground at identical rates. You can see the video here. 
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What Galileo Saw 

Let’s imagine Galileo did drop objects from the top of the tower and could time their falls. 

Here’s a completely made-up data set that assumes the tower is 100 feet tall and that one 
object took 2.5 seconds to fall to the ground.  (Is this even close to being realistic?) 

 

Here t   represents the time passed (measured in seconds) since dropping the object and h  the 
height of the object at each time (measured in feet). 

What should data like this reveal about acceleration due to gravity? 

Well, 

velocity is the rate of change of position (in our case, heights) 

acceleration is the rate of change of velocity. 

Since the data is based on regular time differences, the velocity of the falling object can be 
studied by taking the differences in height values. That is, the first row of a difference table for 
the height data informs us about velocities. 

 

And information about acceleration can be gleaned by looking at the changes of velocity, the 
second row of the difference table. 

 

Galileo was seeing the same set of constant differences in the second row of his data tables for 
all the objects he tested. 
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Galileo’s Conclusions 

Galileo saw that not only were objects of different masses accelerating in the same manner due 
to gravity, they were all accelerating at the same constant rate: acceleration due to gravity is a 
fixed constant value, independent of mass.  

Displacement data from (ideal) falling motion gives constant second differences, provided the 
initial time measurements are taken at regular intervals. 

Galileo then said that it follows that the change in height of a falling object is given by a 
quadratic expression, 

2at bt c+ + .  

 

Whoa! Hold on! How does that follow? 

 

This matches what we are told in physics class, but why does it follow? What is it about 
sequences that allows us to immediately know that the formula behind the data is quadratic?  

It seems we need to understand the mathematics of sequences of numbers that have some 
structure within the differences between terms.   
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Lesson 3: Sequences – For when you Trust Patterns. (But 
Please Don’t Trust Patterns.)  
Let’s do a “deep dive” into special sequences of numbers. 

 

If you do believe that patterns likely hold true, what then would you say is the next number in 
this sequence? 

 

No doubt you noticed the constant difference of 3 between the terms we see and so would 
guess the next entry to be 20. Of course there is no reason to believe that all differences will 
forever remain constant, but noticing this for what we have makes 20 an intelligent guess for 
the next number. 

 

 

Of course not all sequences have constant differences. For example, this sequence fails to have 
a constant difference between terms. 

 

But it does have constant “second differences.” 

 

A sequence like this one 

 17  17  17  17  17  17  17  17 … 

is constant from the start.   
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Practice 1: Make an intelligent guess as to the next number in the sequence  

2  3  6  11  18  27  38  __. 

   

Practice 2: Consider the following sequence of diagrams each made of squares 1 unit wide. 

 

If the implied geometric pattern from these first five figures continues … 

a) What would the perimeter of the tenth figure likely be? 
b) What would the area of the tenth figure likely be? 

 

 Practice 3:  

a) Show that for the following sequence it seems that the third differences are constant. 
Make a prediction for the next number in the sequence. 
 

0   2  20  72  176  350  612 … 
 

b) How many differences must one complete in the sequence below to see a row of 
constant differences? (The sequence is the powers of two.) 

1  2  4  8  16  32  64  128  256  … 
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Practice 4:  

a) The sequence of square numbers begins 1, 4, 9, 16, 25, 36, 49, 64, …. (The n th number 
in this sequence is 2n .) 

 

  Is there a row in the difference table of the square numbers that is constant? 

a) The sequence of cube numbers begins 1, 8, 27, 64, 125, 216, 343, 256, …. (The n th 
number in this sequence is 3n .)   Is there a row in the difference table of the cube 
numbers that is constant? 
 
 

Practice 5: Use differences to make an intelligent guess as to the next element of this sequence. 

 -1   4   7   8   7   4   -1   __ 
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LEADING DIAGONALS 
Here is a sequence and a table of all its differences! (Well, if we trust patterns, it is clear that 
the difference rows are eventually all zero.)  

The first entry in each difference row form the leading diagonal of the difference table.   
 

 

And here now is just a leading diagonal of some difference table. Check that you can construct 
the original sequence from it. For example, the second entry on the top row must differ from 1 
by zero, and so also be 1. The second entry on the second row must differ from 0 by two, and 
so be 2. This means that the third entry on the top row must be 3. (Do you see why?) And so 
on. 
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Practice 6: Do this! Show that you can fill in the entire set of blanks in a difference table just 
from knowing the table’s leading diagonal.  

 

Practice 7: What sequence has 0  0  1  0  0  0  0  0  0  … as its leading diagonal? 

 

 

We learn 

 To know the leading diagonal of a difference table is to know  
the original sequence! 

 

So let’s now get to know some leading diagonals of sequences.   
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Getting Formulas from Leading Diagonals 
 

Here’s the constant sequence of 1s and its leading diagonal. The n th term of this sequence is, 
well, 1!  

 

And here’s the sequence of counting numbers and its leading diagonal. The n th term of this 
sequence is n . 

 

A previous practice question looked at the sequences of square numbers (with n th term given 
by 2n ) and cube numbers (with n th term given by 3n ). Here are their leading diagonals. 

        

 

Optional: Care to work out the leading diagonal for the sequence of fourth powers too? (Here 
the n th term of the sequence is given by 4n .) The answer could be no! 
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Now consider this.  

 Look at the sequence with n th term given by 2n n+ . 

The first term of the sequence is 21 1 2+ = , the second term is 22 2 6+ = , the third term is 
23 3 12+ = , and so on. We get sequence 2, 6, 12, 20, 30, 42, ….       

Is the leading diagonal of this sequence just the sum of the diagonals for the sequences 
given by  2n  and n  (adding matching entries in each diagonal, perhaps)? 

 

Let’s check.  

Here’s the difference table for the sequence given by 2n n+ . 

 

Yes! Its leading diagonal is indeed the sum of the diagonals for 2n and for n . Wow! 

 

Comment: I am getting a bit loose with my language. Instead of saying “the leading diagonal for 
the sequence with n th term given by 2n , ” for instance, I am just saying “the leading diagonal 
for 2n .” I hope my short-hand language is clear enough. 
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This example suggests a strategy for finding formulas for sequences from our catalogue of 
standard leading diagonals. 

When given a sequence of integers 

1. Find its leading diagonal by constructing its difference table.  
2. Try to recognize that leading diagonal as a combination of standard leading diagonals. 

This will give a candidate formula for the sequence. 

This is, of course, assuming we trust patterns and choose to believe that everything just hangs 
together beautifully and magically. But since we are only dealing with a finite number of terms 
of any sequence, we can always check our potential formula by plugging in values for n   and 
seeing if does indeed produce that desired list of numbers. We need a third step. 

3. Check to see if the candidate formula actually works. 

 

For the record, here again are our standard leading diagonals. 

 

 

 

(Feel free to add to this picture the diagonals for the fourth, fifth, sixth, … powers too!)  
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Example: Find a formula for the sequence  

 1   6   15   28   45   66   … 

(This is, of course, under the assumption we can trust patterns.) 

 

Answer: Here is the difference table for the sequence and its leading diagonal (assuming we 
can trust the pattern of zeros continues). 

 

Is this leading diagonal some combination of our standard diagonals? 

 

Notice that our leading diagonal has 0s in the fourth position onwards. This tells us we likely 
won’t need to use the diagonal for 3n  (or for any higher of n  if you tried working out the 
diagonals for the fourth powers and the like) as it has non-zero terms in those positions. 

So let’s focus on using the diagonals of 1 and n  and 2n . 

Our leading diagonal has the number 4 in the third position and only the diagonal 2n  has a non-
zero entry in the third position. It looks like we’ll need two copies of 2n . 
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We need 5 in the second position and right now we have double 3, to give 6, in that position. 
This shows we need -1 copies of the n  diagonal.  

 

The 4 and the 5 in the target diagonal are now all set, and so is the beginning 1 by luck. We 
don’t need the 1 diagonal at all.  

 

So our candidate formula for the sequence is 22n n− . And putting in 1, 2, 3, 4, 5, and 6 for n  in 
turn confirms this formula gives the outputs 1, 6, 15, 28, 45, and 66.  

We have found a formula for the sequence! 
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Practice 8: Use difference methods to find a formula for the sequence of numbers  

2, 2, 4, 8, 14, 22, 32, …    

(Just so you know, the answer is 2 3 4n n− +  . Can you see get this from looking at the leading 
diagonal for the sequence?) 

 

Practice 9:  Find a formula that fits the sequence 0, 2, 10, 30, 68, 130, 222, …. 
(The answer is 3 23 4 1n n n− + − .)  
  

Practice 10:  

a) Find a formula that fits the sequence 5, 8, 11, 14, 17, 20, 23, …. 
b) Find a formula that fits the sequence 3, 3, 3, 3, 3, 3, 3, …. 
c) Find a formula that fits the sequence 1, 3, 15, 43, 93, 171, 283, …. 
d) Find a formula that fits the sequence 1, 0, 1, 10, 33, 76, 145, 246, 385, .... 

 
e) Find formulae for as many of these sequences you feel like doing!  

3  3  7  21  51  103  183  297  ... 

0  9  24  45  72  105  144  189  240  … 

6  24  60  120  210  336  … 

230  275  324  377  434  495  … 

 

Practice 11: Find a general formula for the n th triangular number: 1, 3, 6, 10, 15, 21, 28, 36, … 

 

(Don’t be afraid of fractions!) 
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Practice 12: Let ( )S n  be the total number of squares, of any size, one can find in an n n×  grid 

of squares. For example, ( )3 14S =  because one can find nine 1 1×  squares, four 2 2×  squares, 
and one 3 3×  square, for a total of 9 4 1 14+ + =  squares in a 3 3×  grid. 

 

a) Find ( )1S , ( )2S , ( )4S , and ( )5S . 

b) What do our general difference methods suggest for a general formula for ( )S n ? 

c) OPTIONAL CHALLENGE: What is the value of 2 2 2 2 21 2 3 99 100+ + + + + ?       

d) OPTIONAL CHALLENGE: Care to count titled and non-tilted squares on arrays? 
For instance, on a five-by-five array of dots on can draw 30 non-tilted squares and 20 titled 
squares giving 50 squares in total. 

 

 

 

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://creativecommons.org/licenses/by-nc-sa/3.0/


U-SHAPED CURVES: Teaching Guide 

© 2019 James Tanton. Some rights reserved. gdaymath.com                         26 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0) 

But We Cannot Trust Patterns! 
 

Here’s one of my favourite puzzles. 

Draw some circles with dots on their boundaries: one with 1 dot on its boundary, one 
with 2 dots on its boundary, one with 3 dots on its boundary, and so on.  

Next, for each circle, connect each and every pair of boundary dots with a line segment. 
This divides each circle into a number of regions. Count the regions.  

 

The circle with one dot has 1 region. The circle with two dots, 2 regions. The circle with 
three dots, 4 regions. The circle with four dots, 8 regions. The circle with five dots, 16 
regions.   

How many pieces do you expect to see from six boundary dots? 

 

Up to now we’ve been trusting patterns, and our trust clearly says to expect 32 regions to 
appear from connecting six dots. (The count seems to double every time.)  

 

 But try as you might, you will not get 32 pieces! 
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Try it! You will either see 30 or 31 regions depending on how you place your dots. (If you are a 
person who likes to space one’s dots symmetrically about the boundary, for instance, you will 
see only 30 pieces. You will create a multiple intersection point that masks an extra region.)  

 

So here is the moral of this puzzle. 

We cannot trust patterns! 
We can be excited by patterns. We can be motivated by patterns. But we can never trust a 
pattern until we have a logical reason to justify why it should be true.  

People sometimes say that mathematics is about finding patterns. That is not quite right. It is 
about finding patterns and structure AND THEN using logical reasoning to explain why those 
patterns are true and that structure holds—or to find counter examples to show that one’s 
suspicions are wrong.  

 

CHALLENGE: Suppose 7 dots are placed on the boundary of a circle in such a manner that the 
maximal number of regions result when one connects pairs of dots with line segments. How 
many regions is that? 

What is the maximal number of regions that can result with 8 dots? With 9 dots? 

Care to keep computing more and more terms of our sequence?  

1   2   4   8   16   31  __  __  __  __  __ … 
 

 

ULTRA-CHALLENGE: Might there still be a formula for the numbers in this sequence? 

(See chapter 4 of MATH GALORE! (MAA, 2012). High-school students found such a formula and 
proved it works!) 
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Lesson 4: Projectiles, Parabolas, and Non-Parabolas 

Now back to Galileo. 

Recall from Lesson 2 that Galileo did confirm experimentally that objects falling (well, rolling) 
under the influence of gravity accelerate at a constant rate. The data of distances fallen at 
regular time intervals has constant double differences.  

 
 

We understand now that Galileo was right to then claim that the data is following a quadratic 
expression: the height of a falling object is given by a formula of the form  

 2at bt c+ +  

where t  is the amount of time the object has been falling. Wonderful!  

 

When one throws an object in the air it undergoes two motions: 

i) it moves horizontally at a uniform rate (assuming the effect of air resistance is 
negligible. 

ii) its vertical height changes according to this quadratic formula.  

 

The U-shaped curve one sees as the path of a tossed object is, we have now shown, is indeed 
the shape of the graph of a quadratic equation.  
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Parabolas 
 

Greeks scholars of ancient times classified a whole host of special curves following certain 
geometric properties. One such curve is the parabola, which we alluded to in Lesson 1. It is 
constructed as follows. 

 

Draw a fixed point F (called the focus)  and a fixed line L  (called  the directrix) on the 
page. Then the parabola with this focus and directrix is the set of all points in the plane 
equally distant from F  and L  as shown. 
 

 

 

Legend has it that Archimedes of Syracuse (288 – 212 BCE) suggested building huge parabolic 
mirrors on the cliffs of the island to focus the Sun’s rays on approaching enemy wooden-ships 
and set them on fire. Greek scholars knew that the parabolic shape has the geometric property 
of focusing parallel rays of light.  
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One can construct a parabolic curve by folding paper.  

Draw a dot a couple of inches up from the bottom edge of the page for the focus F and 
imagine the bottom edge line as the directrix L .  

 

Now lift up the bottom edge and align one point on it with the point F . Make a crease 
and unfold. 

         

Do this another 50 times or so, lifting different points along the bottom edge up to the 
point F  and making a crease line each and every time.  

 

Those crease lines outline a curve, and that curve is a parabola! 
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ASIDE: Here’s how to show that the curve we see has the geometric property of being a 
parabola. 

To be clear, we will show that each crease line we create is a tangent line to a parabola. The 
set of all crease lines thus give the set of all tangent lines to the parabola. 

Suppose the point P  on the directrix is lifted up onto F  to make the dashed crease line 
shown.  

 

By the symmetry of folding, every point on the crease line is the same distance from F  as it 
is from P . In particular, the point T  directly above P  on the crease line is equidistant from 
P  and F . We see then that T  satisfies the geometric condition of being on the parabola 
with focus F  and directrix L . 

 Each crease line has at least one point on the parabola with focus F  and directrix L . 

 Consider any other point R  on the crease line.  

 

Let a  be its distance from F  , which equals its distance from P , and let b  be its distance 
from L . We see that b a≠  (b  is the leg of a right triangle and a  is the hypotenuse and 
these can’t be equal). So R  does not satisfy the geometric condition of being on the parabola 
with focus F  and directrix L . 

     Each crease line has only one point on the parabola with focus F  and directrix L . 
 

Thus each crease line meets the parabola with focus F  and directrix L at only one point, and 
so is indeed a tangent line to the curve.  

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://creativecommons.org/licenses/by-nc-sa/3.0/


U-SHAPED CURVES: Teaching Guide 

© 2019 James Tanton. Some rights reserved. gdaymath.com                         32 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0) 

 

ACTIVITY:  
High school textbooks make the claim that a parabola is the same shape curve as the graph of a 
quadratic equation 2y ax bx c= + + . Does this seem feasible?  

a) Make a parabola by folding paper.  
 

b) Mark off regular intervals along the bottom edge and measures heights from the bottom 
edge to the curve as shown. This gives a sequence of values.  
 

 

c) Compute the difference table for this data.  
 

d) Within human error, does it seem reasonable to say that you have constant double 
differences? 

 

CHALLENGE: Suppose we situate matters in the coordinate plane so that the directrix L  is a 
horizontal line k  units below the x -axis (and so has equation y k= − ) and the focus F  is a 

point k  units high on the vertical axis (and so has coordinates ( )0, k ).  

Translate the geometric condition for a point ( ),P x y= to be the parabola with focus F and 

directrix L  into an algebraic condition. Is that algebraic condition a quadratic equation? 

HARD CHALENGE:  Conversely, prove the graph of a quadratic equation 2y ax bx c= + +  is sure 
to be a parabola. What is its focus? What is it is directrix? 

Pedagogical Comment: This is a common faux pas of many high school texts. It is taken as 
“obvious” that the terms parabola and quadratic graph are interchangeable. The definition of a 
parabola is very different from the definition of the graph of an equation 2y ax bx c= + +  and 
it is not at all obvious that these two curves are, or even should be, the same. 
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Galileo’s Mis-step 

Let’s keep studying the U-shaped curves we see in nature. 

Galileo noticed that the shape of chain hanging between two poles follows a U-shaped curve 
and did wonder if it is following a basic quadratic formula too. He suspected it did.  

 

 

ACTIVITY:  

a) Hang a piece of light-weight chain on a white-board. 
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b) With a ruler, draw a horizontal line and mark off regular intervals along it. Measure the 
horizontal heights shown and collect a sequence of data values.  

 

c) Use difference methods to find a quadratic formula for the heights along the chain. Be honest 
about what you notice. 

 

 

 

DO NOT READ THE NEXT SECTION UNTIL YOU HAVE ACTUALLY TRIED THIS ACTIVITY FOR 
YOURSELF AND HAVE LOOKED AT YOUR OWN DATA. (Spoilers are coming next!)  
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There are no doubt inaccuracies in your data due to human error and the first and second 
differences you calculate are not constant. Go back and try to collect more precise and accurate 
data. 

 

But you will find the second differences are still not constant.  

 

And try as you might, with more and more accurate measurements, you will fail to see constant 
second differences.  

It turns out that the U-shaped curves of hanging chains simply are not quadratic. And your data 
is telling you that! 

The shape of the curve of a hanging chain is known as a catenary curve (from the Latin catena 
for chain). It wasn’t until 1691 that mathematicians found a precise formula for this curve—and 
it is very different from a quadratic expression! 

 

To end this lesson, let me point out that you now have the practical power to test whether or 
not certain U-shape curves are actually quadratic in structure. Feel free to try these three 
examples.  

 

EXTENDED ACTIVITY 1: Is the St. Louis Gateway Arch in the shape of a quadratic curve? 
Find out by making measurements on a photograph of the arch. 

 

EXTENDED ACTIVITY 2: Is a semi-circle given by a quadratic expression? Find out by 
tracing a pot lid on a piece of paper and making measurements with a ruler.  

 

EXTENDED ACTIVITY 3: Is the path of a projectile truly quadratic (or does air resistance 
have a significant effect on the shape of paths)? Find a time-lapse series of photographs 
of a basketball or some other tossed object and measure the height of the ball on the 
photographs at regular time intervals.  

 

Comment: Here’s a shocker. The path of a projectile on the surface of a planet—even one 
without an atmosphere, which avoids air resistance—is never quadratic in nature! The motion 
of a thrown object in ideal circumstances is actually the arc of ellipse, another special curve 
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identified by Greek scholars of ancient times. The underlying assumption in physics classes is 
that the Earth is flat and that gravity always points pulls in the same direction. But on a 
spherical planet the direction of the “pull” of gravity is always towards the center of the planet, 
and this direction changes as the object moves. 
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Lesson 5: Debunking Patterns 
We have now seen that not all curves that appear to be quadratic actually are! 

Let’s see what we can do now if we don’t trust the patterns we see in sequences.  

 

 

Suppose you take an intelligence test and are asked this question. 

 

Clearly you would answer 17 , because you could see that this sequence is following the 
formula   

4 3 27 35 245 151 7
24 12 24 12

n n n n− + − + . 

(Test this. Put in 1n =  and see the formula gives 2. Put in 2n =  and see it gives 4 , put in 3n =  
to see it gives 6, put in 4n =  to see it gives 8, and finally, put in 5n =  to see it gives 17.)   

 

Actually, you change your mind, and say the next number is 8−  because you recognize the 
sequence as following the formula  

4 3 20.75 7.5 26.25 39.5 18n n n n− + − + − .  

(Test this. Put in 1n =  and see the formula gives 2. Put in 2n =  and see it gives 4 , put in 3n =  
to see it gives 6, put in 4n =  to see it gives 8, and finally, put in 5n =  to see it gives 8− .)   

 

But then you realize that you can write down any number for the next value, and so you decide 
to just answer with the symbol A  for a general number knowing that  

 ( ) ( )( )( )( )
10

1 2 3 4 2
24

A
n n n n n

−
− − − − +   

gives the value 2 for 1n =  , 4 for 2n =  , 6 for 3n =  , 8 for 4n =  , and A  for 5n = .     
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The fact is one can readily create a formula to fit any finite set of data values, including a data 
set that has a “crazy” final term. 

 This shows that believing in patterns can be dangerous! 

So how does one find formulas to fit data?    

 

We give two methods.  

Our first technique for finding formulae for data is due to French mathematician Joseph-Louis 
Lagrange (1736-1813) and is today called Lagrange’s Interpolation Formula. It looks shockingly 
scary at first.  

 

Lagrange’s Interpolation Formula 

Here is an “obvious” formula that takes the values A , B , C , D  , and E  for the values 1n = , 
2 , 3 , 4  , and 5  in turn. 

( )( )( )( )
( )( )( )( )

( )( )( )( )
( )( )( )( )

( )( )( )( )
( )( )( )( )

( )( )( )( )
( )( )( )( )

( )( )( )( )
( )( )( )( )

2 3 4 5 1 3 4 5
1 2 3 4 1 1 2 3

1 2 4 5 1 2 3 5
2 1 1 2 3 2 1 1

1 2 3 4
4 3 2 1

n n n n n n n n
A B

n n n n n n n n
C D

n n n n
E

− − − − − − − −
+

− − − − − − −

− − − − − − − −
+ +

− − −

− − − −
+

 

        

Indeed, this looks horrific at first glance! But it is actually easy to understand after one has 
taken a deep breath.  
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Let’s process it in stages.  

1. First note that there are five terms added together. 
  

2. There is one term for each appearance of the values A , B , C , D  , and E . 
 

3. Each term is designed to vanish for all but one of the values 1n = , 2 , 3 , 4  , and 5 . 

 

To make sense of this third statement, put 1n = , say, into the formula and see what it does to 

each term of in the expression. For example, the second term is 
( )( )( )( )

( )( )( )( )
1 3 4 5

1 1 2 3
n n n n

B
− − − −

− − −
 

with the factor 1n −  in its numerator. When we put 1n =  into this expression we thus get zero 
in the numerator of the expression and thus the whole expression equals zero.  

 

The third, fourth, and fifth terms in the sum also have a factor of 1n −  in their numerators, and 
so each equal zero when n  equals 1. 

Only the first term will be non-zero for 1n = . 

 

Check: Put 4n =  into the formula. Which terms vanish for 4n = ? Which one term “survives” 
for 4n = ? 

 

4. Each term in the sum is a number times a fraction. The fraction is designed to equal 
1 at a specific value of n .   

 

To make sense of this, consider putting in 1n =  again. The final four terms in the sum are zero 
and only the first term “survives.” But look what happens when we put in 1n =  into the first 
term. We get 

 
( )( )( )( )

( )( )( )( )
1 2 1 3 1 4 1 5

1
1 2 3 4

A A A
− − − −

= × =
− − − −

. 

The denominator was designed to match the numerator for this instance and the term has 
value A . The sum of all five terms equals 0 0 0 0A A+ + + + =  for 1n = , just as wanted. 

Check: Put 4n =  into the entire formula and see it gives the value 0 0 0 1 0D D+ + + × + = , just 
as hoped.    
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Practice 1: Convince yourself that the formula  

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

10 20 6 20 6 10
8 122 4600

4 14 4 10 14 10
n n n n n n− − − − − −

+ +
− − −

 

 gives the value 8  for 6n = , the value 122  for 10n = , and the value 4600  for 20n = . 

 

Practice 2: Find a formula that gives the value 9000  for 3n = , the value 45−  for 5n = , and the 

value 2
3

 for 8n = . (Don’t bother simplifying your formula.)  

 

Practice 3: Write down a formula that fits this data set. 

 

Practice 4: You are asked to write the next number in this sequence:    

1   2   3   4   __ 

You decide to write π . Write down a formula that justifies your answer. 

 

 

Back to Difference Methods 
Here’s a second method for finding formulae for finite data sets. It’s our earlier approach with 
difference methods.  

Let’s go back to the very first sequence of this lesson. Let’s find a formula that fits the data  

2  4  6  8  17.  

To do so, just write out a difference table for those five data values and pretend that the final 
row is a line of constant differences. 
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Look at the leading diagonal and recognize it as a combination of standard leading diagonals 
just as before. If you are not afraid of fractions and working with the leading diagonal of the 
sequence of 4n  you will get the formula I presented:  

 4 3 27 35 245 163 7
24 12 24 12

n n n n− + − + .  

(Alternatively, use Newton’s insight of lesson 8 to get, without any hassle, the same formula, 

but as ( ) ( )( )( )( )1 2 3 4
2 1 2 1 7

24
n n n n

n
− − − −

⋅ + ⋅ − + ⋅  .) 

 

Practice 5: Find an expression 2an bn c+ +   that fits the sequence 5  6  10. (That is, find a 
formula that gives 5  for 1n = , 6  for 2n = , and 10  for 3n = .) 
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Lesson 6: Fitting Quadratics to Data 
 

Sometimes students are asked to find a quadratic formula 2y ax bx c= + +  to fit three data 
points. Lagrange’s Interpolation formula works very well for this. The task of simplifying the 
formula one gets (if one is required to simplify answers) is not too onerous.    

 

Practice 1:  a) Show that 
( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

4 5 1 5 1 4
7 10

5 6 5 1 4 1
x x x x x x

y
− − + − − −

= + +
− − −

is a quadratic 

equation in disguise. Show that the graph of this equation passes through the data points 
( )1,7− , ( )4,1 , and ( )5,10 .    

b) Find a quadratic formula that fits the data ( )2,5 , ( )1,6− , and ( )5,46  and make your answer 
look as friendly as possible. 

 

c)  Find a quadratic formula that fits the data ( )2,5 , ( )3,8 , and ( )5,14  and make your answer 
look as friendly as possible. Explain what happens! 

d) There is no quadratic formula 2y ax bx c= + +  that fits the data ( )2,5 , ( )10,6 , and ( )10,100
. (The same input value of 10x =  cannot give two different output values.) So then, how does 
Lagrange’s Interpolation method fail when you try to use it? 

 

Of course, from the previous lesson we know how to find a polynomial that fits any number of 
data points, not just three. 

 

Practice 2: Use Lagrange’s Interpolation Formula to find the equation of the line between two 
points ( ),p m  and ( ),q n  with p q≠ . Is your equation equivalent to “ y mx b= + ”where m  is the 
slope of the line segment between the two points?       
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ASIDE 7: Personal Polynomials 
My proper name is JAMES and I am particularly fond of the polynomial formula 

4 3 283 497 4141 3463( ) 164
24 12 24 12

p x x x x x= − + − + . 

(We know from the story of Exploding Dots that a combination of the non-negative powers of x  
is called a polynomial.)    

It has 
     (1) 10p =  and the 10th letter of the alphabet is J, 
     (2) 1p =  and the 1st letter of the alphabet is A, 
     (3) 13p =  and the 13th letter of the alphabet is M, 
     (4) 5p =  and the 5th letter of the alphabet is E, 
     (5) 19p =  and the 19th letter of the alphabet is S. 

Practice 1: Find your own personal polynomial! 

Practice 2: What is the expression that “spells” JIM? Is the graph of lesson 1 a quadratic graph? 

 

Comment: Go to www.globalmathproject.org/personal-polynomial/ for a really cool web app 
that finds—and graphs—your personal polynomial for you! (Also see more videos explaining 
the mathematics.)  
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OPTIONAL BONUS MATERIAL 

Lesson 8: Sequences – For When You Really Do Trust Patterns 
 
Recall from lesson 3 we were using the standard leading diagonals that come from the 
sequences generated by the powers of n .  

 

If we trusted seeing rows of constant differences, we could then try to write the leading 
diagonal of our difference table as a combination of these basic leading diagonals and get a 
candidate formula for our sequence, which we could then check. 

But this set of standard leading diagonals is awkward and hard to work with! 

It would be so much easier to work with leading diagonals that look like these. 

 

Then we’d know that the diagonal (5 -2 4 7 0 0 0 …), for instance, is given by 

1 2 35 1 2 4 7D D D⋅ − + + .  
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We know that the constant sequence of 1s gives us the first leading diagonal. What sequences 
have 1D , 2D , 3D ,and so on, as their leading diagonals?    

 

Exercise: Fill in each of these difference tables. Do you recognize any of the sequences? 
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Sir Isaac Newton (1642 - 1727) recognized these sequences as the diagonals of the famous 
arithmetic triangle, provided one inserts leading zeros into the diagonals. 

 

And he knew a formula for the terms of this triangle and hence formulas for these terms of 
each of these sequences. (See part 3 of www.gdaymath.com/courses/permutations-and-
combinations/ .) 

 

     

     

 

Comment: In general, the sequence that gives the k th diagonal has terms following the 

formula ( )( ) ( )1 2
!

n n n k
k

− − ⋅ ⋅ −

 .  
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Example: Trusting patterns, find a formula for the sequence 3  4  7  12  19  28 …. 

 

Answer: We have the following difference table.  

 

And we readily see its leading diagonal as a combination of our (new) standard diagonals.  

 

Thus we suspect this sequence is following the formula  

 ( ) ( )( )1 2
3 1 1 1 2

2
n n

n
− −

⋅ + ⋅ − + ⋅   

which simplifies to 2 2 4n n− + . And one check that this formula does indeed work! 

 

Practice 1: Trusting patterns, find a formula for the sequence   

3   7   29   99   247   503   897   1459   …. 

 

Practice 2: Does Newton’s approach give the formula 2n  for the sequence of square             
numbers 1, 4, 9, 16, 25, 36, …? Does it give the correct formula for the cube numbers? 
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Of course, as we saw, mathematicians never trust patterns. They might be motivated by them, 
guided by them even, and they might even feel the formulas suggested by them should be true. 
But mathematicians will never be satisfied until they have a logical explanation that ensures 
patterns really are true.  

This next activity illustrates a lovely interplay between patterns and logic.  

THE SLIDE PUZZLE 
This classic puzzle is usually phrased in terms of frogs and toads leap-frogging over each 
other. Here I’ll just use counters. 

Let’s start with two black and two white counters arranged in a row of five boxes as 
shown.  

 

White counters can only move left. Black counters can only move right.  

Each move is either a slide (S) in which a counter moves one place over to an empty cell 
or a jump (J) in which a counter leap-frogs over an adjacent counter (of any color) into 
an empty cell two places over.  

The goal is to have the black and white counters switch positions. 

With 2N =  counters of each color the puzzle can be solved in 8 moves. 
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Let ( )P N  be the number of moves required to solve an analogous puzzle with N  black 

counters and N  white counters arranged in a row of 2 1N +  boxes.  

We have shown that ( )2 8P = . 

a) Find ( )3P  by solving the 3N =  version of the puzzle. 

 
b) Find ( )1P , ( )4P , and ( )5P . 

c) Assuming we can trust patterns, find a possible formula for ( )P N . 

 

Solving the 2N =  puzzle followed the pattern of moves  

S J S JJ S J S.  
Here we have four slides and four jumps. 

d) What patterns of moves solves the 1N = , 3N = , 4N = , and 5N =  puzzles? 
How many slides appear in each? How many jumps? 

Any conjectures as to how many slides and how many jumps there will be in 
solving a general puzzle with N  black and N  white counters?    

     

e) With N  black and N  white counters explain why a solution must involve 2N  
jumps. (Use a logical argument this time and don’t rely on patterns.)  

 

f) With N  black and N  white counters how many places to the left must each 
white counter move and how many  places to the right must each black counter 
move? Explain why we must have ( ) ( ) 22 1P N N N N= + − . (Does this match 
your answer to part c?) 
 

g) Solve the puzzle again for the case 3N = . This time watch the location of the 
blank space. Is each of the seven boxes empty at some point of play? Must this be 
the case? 
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Challenge: Suppose there are M  black counters and N  white counters.  

 

Is it always possible to rearrange the counters so that the black ones sit to the right 
and the white ones sit to the left? Is there a pattern to the moves required? Is there 
a general formula for the number of moves required? 
 

Challenge: Is it possible to interchange the black and white counters in this two-
dimensional array? Here counters may move in any direction – left, right, up, down – 
via slides and jumps. 
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Differences that Reoccur 
 

Of course, sequences can exhibit many different types of behavior.  

For instance, all the sequences we’ve studied in these notes eventually yield a row of constant 
values in their difference tables, except one! We saw that the sequence of the powers of two 
fail to yield a row of constant differences.  

 

 

 

So our difference methods will not yield a formula for the powers of two. (But we already 
happen to that that n th power of two is given by 2n .) 

Notice that the leading diagonal for the powers of two is the constant sequence of 1s. It’s 
actually the sequence of the powers of 1. 

 

a) Consider the sequence of the powers of three: 1  3  9  27  81  243  729  …. Show that its 
leading diagonal seems to be the powers of two.  

 

b) Consider the sequence of the powers of four: 1  4  16  64  256  1024  4096  …. Show that 
its leading diagonal seems to be the powers of three.  

 

c) Prove that the leading diagonal of the powers of a   
 

2 3 4 5 61 a a a a a a    

 is sure to be the powers of 1a − . 
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Mathematician Robert Jackson noticed that computing the difference table for a leading 
diagonal that isn’t mostly zeros can lead information about the original sequence. 

For example, consider this sequence. 

 

Here’s its difference table.  

 

Its leading diagonal doesn’t seem to go to zero. So let’s compute the difference table of this 
diagonal. 

 

This now is mostly zero.  

 

Jackson noticed that this behavior is similar to the behavior of the powers of 2. They too have a 
leading diagonal that is not going to zero (the powers of 1), but the leading diagonal of that 
leading diagonal is mostly zero.   
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So maybe our original sequence is a “contains” the powers of 2? Let’s try dividing the terms of 
sequence by respective powers of 2. 

0 1 0
4 2 2
24 4 6
96 8 12
320 16 20
960 32 30
2688 64 42

÷ =
÷ =
÷ =
÷ =
÷ =
÷ =
÷ =


 

Now look at the difference table of this divided sequence.  

 

Our methods give the formula 2n n+  for this divided sequence, suggesting that the n th term 
of our original sequence must be 

 ( )22n n n+    

and we check that it works! 
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Practice 3: Consider the sequence of numbers  

  0   9   108   891   5832    32805    166212     780759    … 

Draw the difference table for this sequence. 

Compute the difference table for its leading diagonal.  

Compute the difference table for the leading diagonal of this difference table.  

Keep doing this for a while and see that the sequence is exhibiting behavior analogous to that of 
the powers of three.  

Find a formula for the n th term of this sequence. 

 

 

Of course, not all sequences succumb to the approaches we described thus far. For example, 
look at the sequence of Fibonacci numbers with each term after the first two is the sum of its 
previous two terms. 

 1  1  2  3  5  8  13  21  34  55  89  …  

Do our techniques work to give a general formula for the n th Fibonacci number? 

 

The theory of difference methods is still an area of research for mathematicians.  
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ASIDE 9:  Final - and Optional – Theoretical Comments    
In the lessons about sequences I was very careful to point out that we were getting candidate 
formulas for our sequences and that we had to go to the trouble to check if they actually work. 
Well, it turns out that they will always work, and now we have the means to prove that they 
will.  

The argument is theoretical, and I’ll demonstrate the gist of it here with one specific instance. 
We’ll prove: 

If a sequence has a difference table with constant second differences (but not constant 
first differences), then than sequence is given by a formula of the form 2an bn c+ + , a 
quadratic formula. Moreover, this is the formula that arises by recognizing the leading 
diagonal as a combination of the 1, n , and 2n  leading diagonals. 

 

The same approach can be used to prove: 

If a sequence has a difference with constant third differences (but not constant second 
differences), then that sequence is given by a cubic formula 3 2an bn cn d+ + + . 

 If a sequence has a difference with constant fourth differences (but not constant third 
differences), then that sequence is given by a quartic formula 4 3 2an bn cn dn e+ + + + . 

And so on. We also have 

If a sequence has a difference with constant differences (but the sequence itself is not 
constant), then that sequence is given by a linear formula an b+ . 

Our very first example was an example of a “linear sequence”. It is generated by the formula 
3 1n − .  

 

 
 

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://creativecommons.org/licenses/by-nc-sa/3.0/


U-SHAPED CURVES: Teaching Guide 

© 2019 James Tanton. Some rights reserved. gdaymath.com                         56 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0) 

Let’s prove the claims made about a sequence with constant second differences.  

Suppose a  b  c  d  e  …  is such a sequence.  

 

 

 

1. Lagrange’s interpolation formula shows that there is a quadratic expression that gives the 
value  a for 1n = , b for 2n = , and c for 3n = .  

 
( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

22 3 1 3 1 2
1 2 1 1 2 1

n n n n n n
a b c An Bn C

− − − − − −
+ + = + +

− − −
    

 

2. This quadratic formula generates its own sequence and difference table. Since the first three 
terms of the first row were designed to match the original sequence, the first two terms of the 
second row and the first term of the third row of the difference table match the difference 
table of the original sequence too. 
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3. The difference tables of each of the sequences 1 and n  and 2n  is zero from the fourth row 
onwards, and it follows that the difference table for 2An Bn C+ +  must be zero as well beyond 
the third row. 

 

 

4. Thus our original sequence and the sequence from the quadratic expression 2An Bn C+ +  
have matching leading diagonals: a p k 0 0 0 … . This means that all terms of the two difference 
tables—including the entries of the first row, the two sequences—match.    

We conclude: Our original sequence is generated by the formula 2An Bn C+ + . 

 

 

5. Could two different quadratic expressions 2An Bn C+ +  and 2' ' 'A n B n C+ +  generate the 
same sequence?  

If this were possible, then their difference ( ) ( ) ( )2' ' 'A A n B B n C C− + − + −  would be an 

expression that gives only zero values, that is, produces a sequence that is all zeros. But if any 
of the values 'A A− , 'B B− , or 'C C−  is non-zero, this would not be the case. So it must be 
the case that 'A A= , 'B B= , and 'C C= . 

We conclude: There is only one quadratic expression that generates a sequence with constant 
second differences.  

So once you have found one quadratic expression that works, you have found the quadratic 
expression that works!       
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	Lesson 1: Some U-Shaped Graphs
	One of the first—usually the first—non-straight-line graph one encounters in school is the graph of a quadratic equation.  One starts by drawing the graph associated with the quadratic equation  to see a beautiful symmetrical U-shaped curve.
	Just to be clear, the graph of an equation is a plot of all the data points that make the given equation a true sentence about numbers. For example, choosing  and  makes  a true number sentence, but choosing  and  does not. So we plot the point  as pa...
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	These U-shaped graphs are full of surprises. Here’s one.
	Practice 2: Suppose we tilt the graph of  (well, rotate it, actually) counterclockwise about the origin just . Does the -axis intercept this tilted graph at some large non-zero value?
	Again, the solutions to all these practice problems appear at the end of this guide. But let me help you out with this question right now as it seems extraordinarily tough to answer.
	Mathematicians are also human and get scared by questions and math challenges too. But one technique they often employ when faced with a question they don’t first know how to answer is to change the question!
	What’s the scariest part of this question? It’s tilting the U-shaped graph. How does one actually do that? I don’t personally know! So, let’s tilt something else instead. What if we keep the graph of  the same and tilt the vertical axis  clockwise ins...
	Oh! Hang on! Is this equivalent to answering the original problem?
	Here’s the biggest surprise of these U-shaped graphs of all. Many people seem to miss this shocker when they first study quadratic equations.
	Practice 3: The graph of  is a symmetrical U-shaped curve. The graph of , on the other hand, is not! It is a straight line through the origin with anti-symmetry if you like—the data plot rises to the right as it decreases to the left.
	Now for a weird question: What picture would be obtain if we “added” these two graphs?
	What could we mean by this?
	Let’s look at each  value and add their matching  values. For example:
	For , we’ll add  and  and get .
	For , we’ll add  and  and get .
	For we’ll add  and  and get .
	That that is, we are plotting the graph of the equation .
	It is clear as that as we put in larger and larger positive  values, we are getting higher and higher points. The graph rises upwards as we move to the right. (Maybe in a straight line? Maybe in some curved way?)
	Things are more interesting to the left for negative  values: the graph of  has data points with positive heights in this region, but the graph of  has points of negative heights here. We’ll be adding together positive and negative heights. Will they ...
	Do plot the graph of . Make a table of data values that give true number sentences and plot those data points. Consider enough of them to get a good sense of the shape of the graph. You are in for a surprise!
	The surprise is that it is another perfectly symmetrical U-shaped graph just positioned at a different place in the plane. STUNNING and SHOCKING!
	In fact, adding together any basic quadratic expression  and a linear expression  is sure to give an expression whose graph is the same symmetrical U-shaped graph, maybe flattened or steepened a bit, and maybe shifted to a new position in the plane.
	This is just astounding!
	That U-shape is astonishingly robust and one cannot help but be transfixed by its robustness.
	Of course, one can explain why this graphing phenomenon holds by analyzing the algebra of quadratic equations. But hopefully you were equally shocked by this phenomenon when you first started learning to graph quadratics.
	Comment: If you are looking for a review of quadratics, their algebra and their graphs, full of all the surprises and shocks, see www.gdaymath.com/courses.
	Now to the issue we’ll explore in these notes.
	How ubiquitous are these U-shaped curves from quadratics?
	Are the U-shaped curves we see in all sorts of contexts basically the same U-shape, (maybe, as I said, just steepened or flattened a bit and moved or even turned upside-down perhaps)? Are these curves so robust so as to be universal in nature?
	For example, school physics tells us that the path of a thrown object follows the arc of a quadratic graph. Is that true? How do we know?
	Famous Italian mathematician and physicist Galileo Galilei (1564-1642) wondered about the shape a chain hanging between two poles makes. (We see this shape in hanging power lines, in the shape of ropes that surround sculptures in art museums, and so o...
	Greek scholars of ancient times used geometry to describe all sorts of special curve. They called one of their curves a parabola and it too is U-shaped.
	c
	Algebra wasn’t invented for another 800 years or so and so these scholars did not ask: Is this curve given by a quadratic equation? But we can! So, is it? How could we know?
	Is the famous St. Louis Gateway Arch in Missouri of the United States in the shape of a quadratic curve?
	Is the graph of the equation that spells my nickname, JIM, quadratic? This curve passes through the points
	,  and the 1st letter of my name is the 10th letter of the alphabet, J;
	,  and the 2nd letter of my name is the 9th letter of the alphabet, I;
	,  and the 3rd letter of my name is the 13th letter of the alphabet, M.
	Let’s answer all these questions—and more! We’re in for a cool adventure!

	Lesson 2: GRAVITY and GALILEO’S INSIGHT
	Many scholars of ancient times, including Aristotle (ca. 350 BCE), believed that heavier objects fall through the air with faster acceleration than lighter objects. It is hard to detect whether or not this is true with real-life experimentation.
	Try dropping a lacrosse ball and a tennis ball (they are close to the same size) simultaneously from the same height. Can you tell if one hits the ground before the other?
	Nonetheless, it does seem reasonable to suspect that gravity has a “greater effect” on heavier objects causing them to speed up faster than lighter objects when they fall. Many scholars reasoned this.
	But Galileo from the 1500s questioned this reasoning.
	He said to imagine two objects of the same size and shape, but of different masses, being dropped from the Leaning Tower of Pisa at the same time. If gravity has stronger effect on the heavier object, then it would land first, taking the shorter amoun...
	Now attach a very light string between the two objects, ostensibly making them one object which is of greater mass than either individual object. Gravity then should have an even stronger effect on this system. So the two linked objects dropped from t...
	What Galileo Saw
	Galileo’s Conclusions

	Lesson 3: Sequences – For when you Trust Patterns. (But Please Don’t Trust Patterns.)
	Let’s do a “deep dive” into special sequences of numbers.
	If you do believe that patterns likely hold true, what then would you say is the next number in this sequence?
	No doubt you noticed the constant difference of 3 between the terms we see and so would guess the next entry to be 20. Of course there is no reason to believe that all differences will forever remain constant, but noticing this for what we have makes ...
	Of course not all sequences have constant differences. For example, this sequence fails to have a constant difference between terms.
	But it does have constant “second differences.”
	A sequence like this one
	17  17  17  17  17  17  17  17 …
	is constant from the start.
	Practice 1: Make an intelligent guess as to the next number in the sequence
	2  3  6  11  18  27  38  __.
	Practice 2: Consider the following sequence of diagrams each made of squares 1 unit wide.
	If the implied geometric pattern from these first five figures continues …
	a) What would the perimeter of the tenth figure likely be?
	b) What would the area of the tenth figure likely be?
	Practice 3:
	a) Show that for the following sequence it seems that the third differences are constant. Make a prediction for the next number in the sequence.
	0   2  20  72  176  350  612 …
	b) How many differences must one complete in the sequence below to see a row of constant differences? (The sequence is the powers of two.)
	1  2  4  8  16  32  64  128  256  …
	Practice 4:
	a) The sequence of square numbers begins 1, 4, 9, 16, 25, 36, 49, 64, …. (The th number in this sequence is .)
	Is there a row in the difference table of the square numbers that is constant?
	a) The sequence of cube numbers begins 1, 8, 27, 64, 125, 216, 343, 256, …. (The th number in this sequence is .)   Is there a row in the difference table of the cube numbers that is constant?
	Practice 5: Use differences to make an intelligent guess as to the next element of this sequence.
	-1   4   7   8   7   4   -1   __

	LEADING DIAGONALS
	Here is a sequence and a table of all its differences! (Well, if we trust patterns, it is clear that the difference rows are eventually all zero.)
	The first entry in each difference row form the leading diagonal of the difference table.

	Getting Formulas from Leading Diagonals
	Practice 12: Let  be the total number of squares, of any size, one can find in an  grid of squares. For example,  because one can find nine  squares, four  squares, and one  square, for a total of  squares in a  grid.
	a) Find , , , and .
	b) What do our general difference methods suggest for a general formula for ?
	c) OPTIONAL CHALLENGE: What is the value of ?
	d) OPTIONAL CHALLENGE: Care to count titled and non-tilted squares on arrays?

	But We Cannot Trust Patterns!
	Lesson 4: Projectiles, Parabolas, and Non-Parabolas
	Now back to Galileo.
	Recall from Lesson 2 that Galileo did confirm experimentally that objects falling (well, rolling) under the influence of gravity accelerate at a constant rate. The data of distances fallen at regular time intervals has constant double differences.

	Parabolas
	ACTIVITY:
	Galileo’s Mis-step
	Let’s keep studying the U-shaped curves we see in nature.
	Galileo noticed that the shape of chain hanging between two poles follows a U-shaped curve and did wonder if it is following a basic quadratic formula too. He suspected it did.
	ACTIVITY:
	a) Hang a piece of light-weight chain on a white-board.
	c) Use difference methods to find a quadratic formula for the heights along the chain. Be honest about what you notice.
	DO NOT READ THE NEXT SECTION UNTIL YOU HAVE ACTUALLY TRIED THIS ACTIVITY FOR YOURSELF AND HAVE LOOKED AT YOUR OWN DATA. (Spoilers are coming next!)

	Lesson 5: Debunking Patterns
	We have now seen that not all curves that appear to be quadratic actually are!
	Let’s see what we can do now if we don’t trust the patterns we see in sequences.
	Suppose you take an intelligence test and are asked this question.
	Clearly you would answer , because you could see that this sequence is following the formula
	.
	(Test this. Put in  and see the formula gives 2. Put in  and see it gives , put in  to see it gives 6, put in  to see it gives 8, and finally, put in  to see it gives 17.)
	Actually, you change your mind, and say the next number is  because you recognize the sequence as following the formula
	.
	(Test this. Put in  and see the formula gives 2. Put in  and see it gives , put in  to see it gives 6, put in  to see it gives 8, and finally, put in  to see it gives .)
	But then you realize that you can write down any number for the next value, and so you decide to just answer with the symbol  for a general number knowing that
	gives the value 2 for  , 4 for  , 6 for  , 8 for  , and  for .
	The fact is one can readily create a formula to fit any finite set of data values, including a data set that has a “crazy” final term.
	This shows that believing in patterns can be dangerous!
	So how does one find formulas to fit data?
	We give two methods.
	Our first technique for finding formulae for data is due to French mathematician Joseph-Louis Lagrange (1736-1813) and is today called Lagrange’s Interpolation Formula. It looks shockingly scary at first.
	Indeed, this looks horrific at first glance! But it is actually easy to understand after one has taken a deep breath.
	Let’s process it in stages.
	1. First note that there are five terms added together.
	2. There is one term for each appearance of the values , , ,  , and .
	3. Each term is designed to vanish for all but one of the values , , ,  , and .
	To make sense of this third statement, put , say, into the formula and see what it does to each term of in the expression. For example, the second term is  with the factor  in its numerator. When we put  into this expression we thus get zero in the nu...
	The third, fourth, and fifth terms in the sum also have a factor of  in their numerators, and so each equal zero when  equals .
	Only the first term will be non-zero for .
	Check: Put  into the formula. Which terms vanish for ? Which one term “survives” for ?
	4. Each term in the sum is a number times a fraction. The fraction is designed to equal 1 at a specific value of .
	To make sense of this, consider putting in  again. The final four terms in the sum are zero and only the first term “survives.” But look what happens when we put in  into the first term. We get
	.
	The denominator was designed to match the numerator for this instance and the term has value . The sum of all five terms equals  for , just as wanted.
	Check: Put  into the entire formula and see it gives the value , just as hoped.
	Practice 1: Convince yourself that the formula
	gives the value  for , the value  for , and the value  for .
	Practice 2: Find a formula that gives the value  for , the value  for , and the value  for . (Don’t bother simplifying your formula.)
	Practice 3: Write down a formula that fits this data set.
	Practice 4: You are asked to write the next number in this sequence:
	1   2   3   4   __
	You decide to write . Write down a formula that justifies your answer.

	Back to Difference Methods
	Here’s a second method for finding formulae for finite data sets. It’s our earlier approach with difference methods.
	Let’s go back to the very first sequence of this lesson. Let’s find a formula that fits the data
	2  4  6  8  17.
	To do so, just write out a difference table for those five data values and pretend that the final row is a line of constant differences.
	Look at the leading diagonal and recognize it as a combination of standard leading diagonals just as before. If you are not afraid of fractions and working with the leading diagonal of the sequence of  you will get the formula I presented:
	.
	(Alternatively, use Newton’s insight of lesson 8 to get, without any hassle, the same formula, but as  .)
	Practice 5: Find an expression   that fits the sequence 5  6  10. (That is, find a formula that gives  for ,  for , and  for .)

	Lesson 6: Fitting Quadratics to Data
	Sometimes students are asked to find a quadratic formula  to fit three data points. Lagrange’s Interpolation formula works very well for this. The task of simplifying the formula one gets (if one is required to simplify answers) is not too onerous.
	Practice 1:  a) Show that is a quadratic equation in disguise. Show that the graph of this equation passes through the data points , , and .
	b) Find a quadratic formula that fits the data , , and and make your answer look as friendly as possible.
	c)  Find a quadratic formula that fits the data , , and and make your answer look as friendly as possible. Explain what happens!
	d) There is no quadratic formula  that fits the data , , and. (The same input value of  cannot give two different output values.) So then, how does Lagrange’s Interpolation method fail when you try to use it?
	Of course, from the previous lesson we know how to find a polynomial that fits any number of data points, not just three.
	Practice 2: Use Lagrange’s Interpolation Formula to find the equation of the line between two points  and  with . Is your equation equivalent to “”where  is the slope of the line segment between the two points?

	ASIDE 7: Personal Polynomials
	My proper name is JAMES and I am particularly fond of the polynomial formula
	.
	(We know from the story of Exploding Dots that a combination of the non-negative powers of  is called a polynomial.)
	It has
	and the 10th letter of the alphabet is J,
	and the 1st letter of the alphabet is A,
	and the 13th letter of the alphabet is M,
	and the 5th letter of the alphabet is E,
	and the 19th letter of the alphabet is S.
	Practice 1: Find your own personal polynomial!
	Practice 2: What is the expression that “spells” JIM? Is the graph of lesson 1 a quadratic graph?
	Comment: Go to www.globalmathproject.org/personal-polynomial/ for a really cool web app that finds—and graphs—your personal polynomial for you! (Also see more videos explaining the mathematics.)

	OPTIONAL BONUS MATERIAL
	Lesson 8: Sequences – For When You Really Do Trust Patterns
	Of course, as we saw, mathematicians never trust patterns. They might be motivated by them, guided by them even, and they might even feel the formulas suggested by them should be true. But mathematicians will never be satisfied until they have a logic...
	This next activity illustrates a lovely interplay between patterns and logic.

	THE SLIDE PUZZLE
	This classic puzzle is usually phrased in terms of frogs and toads leap-frogging over each other. Here I’ll just use counters.
	Let’s start with two black and two white counters arranged in a row of five boxes as shown.
	White counters can only move left. Black counters can only move right.
	Each move is either a slide (S) in which a counter moves one place over to an empty cell or a jump (J) in which a counter leap-frogs over an adjacent counter (of any color) into an empty cell two places over.
	The goal is to have the black and white counters switch positions.
	With  counters of each color the puzzle can be solved in 8 moves.
	Let  be the number of moves required to solve an analogous puzzle with  black counters and  white counters arranged in a row of  boxes.
	We have shown that .
	a) Find  by solving the  version of the puzzle.
	b) Find , , and .
	c) Assuming we can trust patterns, find a possible formula for .
	Solving the  puzzle followed the pattern of moves
	S J S JJ S J S.
	Here we have four slides and four jumps.
	d) What patterns of moves solves the , , , and  puzzles? How many slides appear in each? How many jumps?
	Any conjectures as to how many slides and how many jumps there will be in solving a general puzzle with  black and  white counters?
	e) With  black and  white counters explain why a solution must involve  jumps. (Use a logical argument this time and don’t rely on patterns.)
	f) With  black and  white counters how many places to the left must each white counter move and how many  places to the right must each black counter move? Explain why we must have . (Does this match your answer to part c?)
	g) Solve the puzzle again for the case . This time watch the location of the blank space. Is each of the seven boxes empty at some point of play? Must this be the case?
	Challenge: Suppose there are  black counters and  white counters.
	Is it always possible to rearrange the counters so that the black ones sit to the right and the white ones sit to the left? Is there a pattern to the moves required? Is there a general formula for the number of moves required?

	Differences that Reoccur
	ASIDE 9:  Final - and Optional – Theoretical Comments
	In the lessons about sequences I was very careful to point out that we were getting candidate formulas for our sequences and that we had to go to the trouble to check if they actually work. Well, it turns out that they will always work, and now we hav...
	The argument is theoretical, and I’ll demonstrate the gist of it here with one specific instance. We’ll prove:
	If a sequence has a difference table with constant second differences (but not constant first differences), then than sequence is given by a formula of the form , a quadratic formula. Moreover, this is the formula that arises by recognizing the leadin...
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