edfinity ${ }^{\circ}$

QUADRATICS

4．2 Practicing Sneaky Algebra：
 The Factor Theorem

James Tanton

SETTING THE SCENE
We saw last lesson that

$$
x^{2}+5 x+6=(x+2)(x+3)
$$

showing that $x^{2}+5 x+6$ is a straightforward multiple of $x+2$ ：it is $x+3$ copies of $x+2$ ．

This means that if we divide $x^{2}+5 x+6$ by $x+2$ we should get a nice answer，namely， $x+3$ ．

The goal of this essay is to play with $\frac{x^{2}+5 x+6}{x+2}$ ，and other algebraic expressions， in the way of the previous essay：work to make each term in the numerator a multiple of the denominator and adjust for errors we introduce as we go along．

This algebra will lead to a deep mathematical result．

今ッ～ッ
 PRACTICING SNEAKY ALGEBRA

PROBLEM：Compute $\frac{x^{2}+5 x+6}{x+2}$ ．

Consider first the first term x^{2} in the numerator．This is certainly a multiple of x

$$
\frac{x(x)+5 x+6}{x+2}
$$

but we want to see it as a multiple of $x+2$ ．So， let＇s make that happen！But we have to introduce $-2 x$ to compensate．

$$
\frac{x(x+2)-2 x+5 x+6}{x+2}
$$

Now we are playing with

$$
\frac{x(x+2)+3 x+6}{x+2} .
$$

Focus on the second term，the $3 x$ ．This is certainly a multiple of x

$$
\frac{x(x+2)+3(x)+6}{x+2}
$$

but let＇s make it a multiple of $x+2$ ， introducing -6 to compensate for our action．

$$
\frac{x(x+2)+3(x+2)-6+6}{x+2}
$$

But this reads

$$
\frac{x(x+2)+3(x+2)}{x+2}
$$

which we can see as

$$
\frac{x(x+2)}{x+2}+\frac{3(x+2)}{x+2}
$$

which is $x+3$. That is, we have

$$
\frac{x^{2}+5 x+6}{x+2}=x+3
$$

just as we expected!

Let's keep playing this way.

PROBLEM: Is $2 x^{2}+7 x+3$ a multiple of $x-1$? If not, how close is it to being one?

This seems like an unusual question. But let's just march through each term of $2 x^{2}+7 x+3$, making it a multiple of $x-1$ and adjusting for any errors we introduce along the way.

We certainly have $2 x^{2}$ as a multiple of x,

$$
2 x(x)+7 x+3
$$

but let's make it a multiple of $x-1$.

$$
2 x(x-1)+2 x+7 x+3
$$

This is $2 x(x-1)+9 x+3$.

Now let's rewrite $9 x$ as a multiple of $x-1$. We get

$$
\begin{aligned}
& 2 x(x-1)+9(x)+3 \\
& \quad=2 x(x-1)+9(x-1)+9+3
\end{aligned}
$$

and this equals

$$
2 x(x-1)+9(x-1)+12
$$

And it seems that this is as far as we can go. We're stuck with a final number 12 .

So $2 x^{2}+7 x+3$ is close to being multiple of $x-1$, it is simply "off" by 12 .

$$
2 x^{2}+7 x+3=(x-1)(\text { something })+12
$$

(And if you want the detail, the "something" is $2 x+9$.)

There is no need to stick with quadratic expressions in this game.

PROBLEM: How close is $x^{3}-2 x+1$ to being a multiple of $x-5$?

Answer: Let's go through the first few terms of $x^{3}-2 x-1$, each currently a multiple of x, and adjust them to each be a multiple of $x-5$. Here goes!

$$
\begin{aligned}
& x^{2}(x)-2 x+1 \\
& \quad=x^{2}(x-5)+5 x^{2}-2 x+1
\end{aligned}
$$

Now

$$
\begin{aligned}
& x^{2}(x-5)+5 x(x)-2 x+1 \\
& \quad=x^{2}(x-5)+5 x(x-5)+25 x-2 x+1 \\
& \quad=x^{2}(x-5)+5 x(x-5)+23 x+1
\end{aligned}
$$

Now

$$
\begin{aligned}
x^{2} & (x-5)+5 x(x-5)+23(x)+1 \\
& =x^{2}(x-5)+5 x(x-5)+23(x-5)+115+1 \\
& =x^{2}(x-5)+5 x(x-5)+3(x-5)+116
\end{aligned}
$$

We have then that

$$
x^{3}-2 x+1=(x-5)(\text { something })+116 .
$$

It's a multiple of $x-5$ with an "error term" of 116. But what is that 116 really? It must mean something!

Stare at

$$
x^{3}-2 x+1=(x-5)(\text { something })+116 .
$$

It seems irresistible to put $x=5$ into it!
On the right side we get

$$
0 \cdot(\text { something })+116
$$

which is just $0+116=116$.
On the left side we get $5^{3}-2 \cdot 5+1$, which is the value of the expression at $x=5$ (and this does equal 116).

We have that the error term upon dividing $x^{3}-2 x+1$ by $x-5$ is the value of the expression at $x=5$.

The analogous statement is true for our previous example. We had
$2 x^{2}+7 x+3=(x-1)($ something $)+12$.

Here is seems irresistible to put in $x-1$. The right-hand side then becomes $0+12=12$, our error term, and the left-hand side becomes $2 \cdot 1^{2}+7 \cdot 1+3$, the value of the expression at $x=1$.

In general, we have:
We can always divide an expression of the form $a x^{2}+b x+c$ (or any expression involving higher powers of x) by a term of the form $x-h$ and obtain

$$
a x^{2}+b x+c=(x-h)(\text { something })+E
$$

where E is a number, the "error" term. Putting in $x=h$ shows that E is the value of the expression at $x=h$.

PRACTICE 1:

a) Show that $x^{2}+x+1$ has value 111 at $x=10$. Now show that

$$
x^{2}+x+1=(x-10)(\text { something })+111 .
$$

b) Show that $2 x^{3}-3 x^{2}-5 x+1$ has value 1 at $x=-1$. Now show that

$$
2 x^{3}-3 x^{2}-5 x+1=(x+1)(\text { something })+1
$$

c) Show that $2 x^{2}-5 x-3$ has value zero at $x=3$. Explain how you now know that $2 x^{2}-5 x-3$ must be a perfect multiple of $x-3$ with no error term.

THE FACTOR THEOREM
Part c) of the practice problem suggests something profound:

If putting in $x=h$ into an expression

$$
a x^{2}+b x+c
$$

gives zero, then $a x^{2}+b x+c$ is a perfect multiple of $x-h$ with zero error term.
We have
$a x^{2}+b x+c=(x-h)($ something $)$.

For example, if $x=7$ makes an expression equal to zero, then we know $x-7$ is a factor of that expression with no error.

If $x=-3$ makes an expression equal to zero, then we know $x-(-3)$, that is, $x+3$, is a factor of that expression.

If $x=0$ makes an expression equal to zero, then we know $x-0$, that is, x is a factor of the expression. (Is this example already obvious?)

This result is known as the Factor Theorem.
Most people call a value $x=h$ that makes an expression $a x^{2}+b x+c$ equal to zero, a zero of the expression. They will cite the Factor Theorem swiftly by saying:

If h is a zero of an expression, then $x-h$ is a factor of the expression.

PRACTICE 2:

a) Show that $x^{6}-1$ must be a multiple of $x-1$ and also a multiple of $x+1$.
b) Compute $\frac{x^{6}-1}{x-1}$.
c) Compute $\frac{x^{6}-1}{x+1}$.

OPTIONAL PRACTICE 3 (Hard): Show that
$x^{3}-7 x+6$ equals zero for $x=1, x=2$, and for $x=-3$. Now completely factorise the expression, explaining your rationale in careful detail.

Three Incidental Comments:

1. In this set of lessons we are primarily dealing with quadratic expressions $a x^{2}+b x+c$, sums of the first three non-negative whole-number powers of x with numbers as coefficients. But the Factor Theorem applies to any expression that is a sum of any collection of non-negative whole-number powers of x with number coefficients. (Such expressions are called polynomials.)
2. Our "sneaky algebra" trick for dividing an expression by a term $x-h$ is the basis of a technique some curricula call synthetic division.
3. For a purely visual and extra fun way to divide polynomials, see Exploding Dots at www.gdaymath.com/courses.

SOLUTIONS

PRACTICE 1:

a) Show that $x^{2}+x+1$ has value 111 at $x=10$. Now show that
$x^{2}+x+1=(x-10)($ something $)+111$.
b) Show that $2 x^{3}-3 x^{2}-5 x+1$ has value 1 at $x=-1$. Now show that
$2 x^{3}-3 x^{2}-5 x+1=(x+1)($ something $)+1$.
c) Show that $2 x^{2}-5 x-3$ has value zero at $x=3$. Explain how you now know that $2 x^{2}-5 x-3$ must be a perfect multiple of $x-3$ with no error term.

Answer:

a) We have $10^{2}+10+1=111$.

$$
\begin{aligned}
x^{2}+x+1 & =x(x-10)+10 x+x+1 \\
& =x(x-10)+11 x+1 \\
& =x(x-10)+11(x-10)+110+1 \\
& =x(x-10)+11(x-10)+111 \\
& =(x-10)(\text { something })+111
\end{aligned}
$$

b) We have

$$
\begin{aligned}
2(-1)^{3}-3(-1)^{2} & -5(-1)+1 \\
& =-2-3+5+1=1
\end{aligned}
$$

Notice: $x-(-1)=x+1$.

$$
\begin{aligned}
2 x^{3}-3 x^{2}-5 x+1 & =2 x^{2}(x+1)-5 x^{2}-5 x+1 \\
& =2 x^{2}(x+1)-5 x(x+1)+1 \\
& =(x+1)(\text { something })+1
\end{aligned}
$$

c) We have $2(3)^{2}-5(3)-3=0$. So the value of the error term when we try to write $2 x^{2}-5 x-3$ as a multiple of $x-3$ is 0 .

That is,
$2 x^{2}-5 x-3=(x-3)($ something $)+0$.
That is, $2 x^{2}-5 x-3$ as a perfect multiple of $x-3$

PRACTICE 2:

a) Show that $x^{6}-1$ must be a multiple of $x-1$ and also a multiple of $x+1$.
b) Compute $\frac{x^{6}-1}{x-1}$.
c) Compute $\frac{x^{6}-1}{x+1}$.

Brief Answer:

a) Putting in $x=1$ gives $(1)^{6}-1=0$. So $x-1$ must be a factor of $x^{6}-1$.

Putting in $x=-1$ gives $(-1)^{6}-1=0$. So $x-(-1)$, that is, $x+1$ must be a factor of $x^{6}-1$.
b)

$$
\begin{aligned}
\frac{x^{6}-1}{x-1} & =\frac{x^{5}(x-1)+x^{4}(x-1)+x^{3}(x-1)+x^{2}(x-1)+x(x-1)+(x-1)}{x-1} \\
& =x^{5}+x^{4}+x^{3}+x^{2}+x+1
\end{aligned}
$$

c) $\frac{x^{6}-1}{x+1}=x^{5}-x^{4}+x^{3}-x^{2}+x-1$.

OPTIONAL PRACTICE 3: Show that $x^{3}-7 x+6$
equals zero for $x=1, x=2$, and for $x=-3$.
Now completely factorise the expression, explaining your rationale in careful detail.

Answer:

We have

$$
\begin{aligned}
& (1)^{3}-7(1)+6=1-7+6=0 \\
& (2)^{3}-7(2)+6=8-14+6=0 \\
& (-3)^{3}-7(-3)+6=-27+21+6=0
\end{aligned}
$$

Since $x=1$ is a zero, we have
$x^{3}-7 x+6=(x-1)($ something $)$.
But $x=2$ is also a zero and so $x-2$ must be a factor of the expression as well. That factor must be part of the "something."
$x^{3}-7 x+6=(x-1)(x-2)($ something else $)$

But $x=-3$ is also a zero and so $x+3$ must be a factor of the expression as well. That factor must be part of the "something else."
$x^{3}-7 x+6=(x-1)(x-2)(x+3)($ still something else $)$
Now the "still something else" cannot have any x terms in it - if it did and we expanded everything out on the right, we'd have an expression involving x^{4} or a higher power. But there are no such terms in $x^{3}-7 x+6$. So "still something else" must simply be a number. Call it k.

$$
x^{3}-7 x+6=k(x-1)(x-2)(x+3)
$$

Now, again, if we expand the right side, we'd have a term $k x^{3}$. But the left side has just x^{3}. It must be that $k=1$.

So $x^{3}-7 x+6=(x-1)(x-2)(x+3)$ and we have completely factored the expression.

