
 
 

QUADRATICS  
4.4 Roots 

 
James Tanton 

 
 

SETTING THE SCENE 
 
Earlier, we used the technique of factoring to 
find the zeros of a quadratic expression. We can 
also do the reverse: knowing the zeros of a 
quadratic can lead to its factorisation. 
 
PROBLEM: Consider the quadratic expression 

23 2x x+ − . It has value zero for 1x = −  and 

for 
2
3

x = . Use these observations to 

completely factorise  23 2x x+ − . 
 
Answer: One can indeed check that 

( ) ( )23 1 1 2− + − −  and 
22 23 2

3 3
   + −   
   

are 

each zero.  
 
That 1x = −  is a zero of the expression means 
that 1x +  must be a factor of the expression. 
Thus 
 
      ( )( )23 2 1x x x something+ − = + . 
 

That 
2
3

x =  is a zero of the expression means 

that 
2
3

x −  is also a factor of the expression. 

This additional factor must be sitting in the 
“something” part of what we have so far.      
 

( ) ( )2 23 2 1
3

x x x x something else + − = + − 
 

 

 

 
Now, what could the “something else” be? 
 
If we expand what we have so far 
 

( ) ( )

( )

2

2

23 2 1
3

1 2
3 3

x x x x something else

x x something else

 + − = + − 
 

 = + − 
 

 

 
we see that our “something else” cannot 
contain any terms with the variable x , because 
in expanding the right-hand side all the way 
we’d find 2 3x x x⋅ = , or a higher power of x , 
appearing on the right. There are no such high 
powers of x  on the left. This means our 
“something else” can only be a number.  
 
We must have 

( ) ( )

( )

2 23 2 1
3

21
3

x x x x k

k x x

 + − = + − 
 
 = + − 
 

 

where k  is a number.  
 
Next question: What must that number be? 
 
If we expand the right side again, we’d see we 
get the term 2kx . The left side has 23x  and so 
k  must be 3 .   
 
We have  

( )2 23 2 3 1
3

x x x x + − = + − 
 

.  

We have factorized the quadratic! 



 
Comment: Some people might prefer to avoid 
the mention of fractions and rewrite this 
factorization as 

 
( )

( )( )

2 23 2 1 3
3

1 3 2 .

x x x x

x x

 + − = + × − 
 

= + −
 

 
This just a matter of choice and style and not a 
matter of mathematics.  
 

 
THE FACTOR THEOREM - PUSHED 
 
In general, we see that if we can find two 
different zeros x p=  and x q=  of a quadratic 

expression 2ax bx c+ + , then we have two 
factors of the expression.  
 

( )( )( )2ax bx c x p x q something+ + = − −   
 
The “something” that remains in the 
factorization can only be a number, and that 
number must be a , the coefficient of the 2x  
term in the expression. 
 
In summary: 
 

If 2ax bx c+ +  is zero for x p=  and x q= , 
then  

( )( )2ax bx c a x p x q+ + = − − .   

 
 
PRACTICE 1: Solve 22 5 3 0x x− + =  via the 
square method or via the quadratic formula. 
Use your result to then factorise 22 5 3x x− + . 
 
New Terminology 
A value that makes an expression equal to zero 
is called a “zero of the expression.”  For 

example 1−  and 
2
3

 are each zeros of 

23 2x x+ − . 
 

But people also use the word root for a zero of 

an expression: 1−  and 
2
3

 are each roots of 

23 2x x+ − . 
 
The root is connected to the term “square 
root.” After all, 2  is a root of the expression 

2 2x − . 
 
PRACTICE 2:  
What are the two roots of 2 2x a− ?    
Derive, yet again, the difference of two squares 
formula. 
 

PRACTICE 3: If 
1
2

x =  and 1x = −  are the roots 

of 2 3ax x b+ + , what are a  and b ? 
 
 
PRACTICE 4: One of the roots of 2ax bx c+ +  is 
double the other. Show that  
 2 : 9 : 2b ac = . 
 
 
PRACTICE 5: If 3  is a root of 22 3x rx+ −  and 

2rx x k+ +  has two identical roots, what is k ? 
 
 
PRACTICE 6:  
a) Show that 24 4 1x x− +  has only one root. 
b) Does ( )( )24 4 1 4x x x p x q− + = − −  for 
some values p  and q ? 

[Can you see what people say that 24 4 1x x− +  
has a “repeated root”?]    
  
PRACTICE 7: Explain the following result:   

If 2ax bx c+ +  is zero only for x p= , then  

( )22ax bx c a x p+ + = − .   

 

  



 
 

RATIONALISING DENOMINATORS 
AND NUMERATORS 
 

Look at the difference of two squares formula. 

 ( )( )2 2x a x a x a− = − +   

We can apply this to non-square numbers too. 
For instance, we see 

 ( )( )2 2 2 2x x x− = − +   

 ( )( )2 17 17 17x x x− = − +   

and so on. 

Such expressions were handy for scientists and 
engineers in the days before the invention of 
calculators. In doing a mathematical calculation, 
it is possible to obtain a fractional answer with a 
square root in an awkward location. For 
example, one might obtain the answer 

 
1
2

.  

There is nothing mathematically wrong with this 
answer and mathematicians will leave this 
expression as it is. But if you are an engineer 
and need to know the decimal approximation of 
this number you would want to go further.  

Today, we’d just use our calculators and see 

that 
1 0.707
2
≈ . But in the early days, one 

would have to refer to booklets of 

mathematical values, read that 2 1.414≈ , 
and the attempt the long division calculation  

 1.0000000 1.414÷       

by hand. Not fun! 

 

But scholars realized that if you multiply the 
numerator and denominator of the expression 

each by 2 , effectively removing the awkward 
square root term from the denominator to get   

 
1 2 2

22 2
×

=
×

  

then the pencil-and-paper calculation is much 
easier! 

2 1.414 0.707
2 2

≈ =  . 

So comes the piece of advice: IF you need to 
know the decimal approximation of a numerical 
expression and IF you have to compute this by 
hand, try rewriting the expression with no 
square roots in the denominator. 

Again, the mathematics does not care how you 
express a fractional quantity. This was just a 
piece of practical advice for scientists and 
engineers from the early 1900s. 

 

PROBLEM: Rationalise the denominator of 
1

3 2−
. That is, rewrite the number so that no 

square roots appear in its denominator. 

 

Answer:  Here we can use the difference of two 
squares   

( )( )2 2 2 2x x x− = − +  

with 3x = .   

Let’s multiply the numerator and the 

denominator of the expression each by 3 2+ . 
This won’t change the value of the quantity. 

  



 
We get 

( )( )
1 3 2

3 2 3 2 3 2

3 2
9 2

3 2 .
7

+
=

− − +

+
=

−
+

=

 

  

PRACTICE 8: Rationalise the numerator of 

1 3
5
+

.  

PRACTICE 9: Write 
60 2
1 2
−
+

 in the form 

2a b+  with a  and b  integers. 

 

 

 

  



 
 

SOLUTIONS 
 
PRACTICE 1: Solve 22 5 3 0x x− + =  via the 
square method or via the quadratic formula. 
Use your result to then factorise 22 5 3x x− + . 
 
Answer: We get that the zeros of  22 5 3x x− +

1x =  and 
3
2

x = . Thus 

( )2 32 5 3 2 1
2

x x x x − + = − − 
 

.  

This equals ( )( )1 2 3x x− − , if you prefer.  
 
 
PRACTICE 2:  
What are the two roots of 2 2x a− ?    
Derive, yet again, the difference of two squares 
formula. 
 
Answer: Both x a=  and x a= −  make 

2 2x a−  equal to zero. So 
 

 
( )( )

( )( )

2 2 1

.

x a x a x a

x a x a

− = ⋅ − +

= − +
  

 
 

PRACTICE 3: If 
1
2

x =  and 1x = −  are the roots 

of 2 3ax x b+ + , what are a  and b ? 

Answer: We must have  

( )2 13 1
2

ax x b a x x + + = − + 
 

. 

Expanding the right side gives 

 2

2 2
a aax x+ − . 

Comparing this with the left side shows that 

3
2
a
=  and 

2
a b− = , giving 6a =  and 3b = − .    

 

PRACTICE 4: One of the roots of 2ax bx c+ +  is 
double the other. Show that  

 2 : 9 : 2b ac = . 

Answer: Call one of the roots p . Then the 
other is 2 p  and we have 

( )( )2 2ax bx c a x p x p+ + = − − .   

Expanding the right side gives  

2 2 23 2ax bx c ax apx ap+ + = − +  

showing that 3b ap= −  and 22c ap= . 

Thus 

 2 2 29b a p=   

 2 22ac a p=   

and so 
2 9

2
b
ac

= .   

 

PRACTICE 5: If 3  is a root of 22 3x rx+ −  and 
2rx x k+ +  has two identical roots, what is k ? 

Answer: We have that  

 ( ) ( )22 3 3 3 0r+ − =   

showing that 5r = . 

That 25x x k+ +  has two identical roots means 
that the discriminant is zero. This mean 

 21 4 5 0k− ⋅ ⋅ =   

giving 
1
20

k = . 



 
    

PRACTICE 6:  

a) Show that 24 4 1x x− +  has only one root. 

b) Does ( )( )24 4 1 4x x x p x q− + = − −  for 

some values p  and q ? 

[Can you see what people say that 24 4 1x x− +  
has a “repeated root”?]    

 
Answer: a) Its discriminant is 16 4 4 1 0− ⋅ ⋅ = , 
and so it has only one root. 
 
b) Solving the quadratic gives the one solution 

1
2

x = . So by the (ordinary) Factor Theorem, 

1
2

x −  is a factor of  24 4 1x x− + .  A quick 

sketch reveals that what the other factor must 
be. It’s 4 2x − .  
 

 
 
So we have 

 ( )2 14 4 1 4 2
2

x x x x − + = − − 
 

. 

 
Let’s “pull out” a factor of 4  from the second 
term to rewrite this as  

 2 1 14 4 1 4
2 2

x x x x  − + = − −  
  

. 

So the answer to part b is YES! The factor 
1
2

x −  

is repeated. 
 

 
PRACTICE 7: Explain the following result:   

If 2ax bx c+ +  is zero only for x p= , then  

( )22ax bx c a x p+ + = − .   

 
Answer: By the Factor Theorem, x p−  is a 

factor of 2ax bx c+ + .  
 

( )( )2ax bx c x p something+ + = −  
 
Now the “something” can only be a term 
involving numbers and x . (There can be no 2x  
or higher terms.) So 
 

( )( )2ax bx c x p mx n+ + = − +    
 
for some numbers m  and n .  If we expand the 
right side we’ll see the term 2mx  appear. We 
conclude that m  must be the number a . 
 

( )( )2ax bx c x p ax n+ + = − +   
 
Let’s “pull out” a factor a . 
 

 ( )2 nax bx c a x p x
a

 + + = − + 
 

 

 

We see now that 
nx
a

= −  makes the 

expression equal to zero. But we are told that 
p  is the only zero of this quadratic expression. 

So it must be then that 
n
a

−  equals p . This 

means we have 
 
  ( )( )2ax bx c a x p x p+ + = − −    
 
and the claim is true. 
 
 
 



 
PRACTICE 8: Rationalise the numerator of 

1 3
5
+

. 

Answer:  

( )( )
( )

( ) ( )

1 3 1 31 3
5 5 1 3

1 3 2 .
5 1 3 5 1 3

+ −+
=

−

− −
= =

− −

 

 

PRACTICE 9: Write 
60 2
1 2
−
+

 in the form 

2a b+  with a  and b  integers. 

 
Answer:  
 

( )( )
( )( )
60 2 1 260 2

1 2 1 2 1 2

60 2 60 2 2
1 2

62 61 2
1

62 61 2.

− −−
=

+ + −

− − +
=

−
−

=
−

= − +
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