# edfinity ${ }^{\circ}$ 

## QUADRATICS

### 5.3 Steepness

James Tanton

##  <br> SETTING THE SCENE

We've played with the equation $y=x^{2}$ and adjust it to create new equations with the same symmetrical U-shaped graph but shifted to different positions in the plane. But as we know from our algebra work, quadratic equations could also possess a coefficient attached to the $x^{2}$ term. How do the graphs of the equations $y=a x^{2}$ appear for different values of $a$ ?

We'll explore that issue in this essay, and see that there are an infinitude of U-shaped curves I can choose from to have balance on my head!

##  STEEPNESS

Consider the equation $y=2 x^{2}$.

At $x=1$, we have $y=2(1)^{2}$, double the value we had for the $y=x^{2}$ equation.
At $x=2$, we have $y=2(2)^{2}$, double the value we had for the $y=x^{2}$ equation.
At $x=-33$, we have $y=2(-33)^{2}$, double the value we had for the $y=x^{2}$ equation.

We see that the heights of all our data points for the equation $y=2 x^{2}$ are double the heights of the data points for $y=x^{2}$.


The point at $x=0$ is still at height zero.

The graph of $y=2 x^{2}$ is again a symmetrical $U$ shaped graph, still centered with vertex at the origin, but it is a steeper curve.


We can make an even steeper graph by playing with $y=3 x^{2}$ or $y=20 x^{2}$ or $y=10000000 x^{2}!$ (This third equation will have a graph that hugs the vertical axis very tightly if we tried to sketch it accurately.)


We can make a shallower U-shaped graph by using a coefficient small than 1 . For instance, the equation

$$
y=\frac{1}{2} x^{2}
$$

has data points at half the heights of those of $y=x^{2}$, and

$$
y=0.02 x^{2}
$$

has data points at one-fiftieth the heights.
All the data points for $y=0 \cdot x^{2}$ have zero height and so this is U -shaped graph that is so shallow that it is flat!


What if we choose a coefficient that is even lower that zero? That is, what if we worked with a negative coefficient?

Consider, for instance, $y=-x^{2}$.
At $x=1$, we have $y=-(1)^{2}$, the opposite value we had for the $y=x^{2}$ equation.
At $x=2$, we have $y=-(2)^{2}$, the opposite value we had for the $y=x^{2}$ equation.
At $x=-33$, we have $y=-(-33)^{2}$, the opposite value we had for the $y=x^{2}$ equation.

And at $x=0$ we still have $y=-(0)^{2}=0$.
The graph is the same as the original $y=x^{2}$ but now pointing in the negatives.


And we can see now that $y=-2 x^{2}$, for instance, would give a steeper U-shaped graph pointing downwards, and $y=-\frac{1}{33} x^{2}$ would give a shallow downward pointing graph.


So we have

The graph of $y=a x^{2}$ is a symmetrical Ushaped graph based at the origin with the value $a$ affecting the steepness of the graph.

If $a$ is positive, the $U$-shape is upward pointing.
If $a$ is negative, the $U$-shape is downward pointing.

PRACTICE 1: Find three different equations that give U-shaped graphs that balance on my head this way.


PRACTICE 2: Draw, on the same sets of axes, rough sketches of each the following equations.

$$
\begin{array}{lll}
y=x^{2} & y=1.1 x^{2} & y=0.9 x^{2} \\
y=-x^{2} & y=-1.1 x^{2} & y=-0.9 x^{2}
\end{array}
$$

PRACTICE 3: Sketch graphs of
a) $y=3(x-5)^{2}$
b) $y=3(x-5)^{2}+4$
c) $y=-2(x+4)^{2}+40$.

PRACTICE 4: Which of the following equations could have the graph shown?

a) $y=\frac{4}{3}(x+1)^{2}+1$
b) $y=-\frac{4}{3}(x+1)^{2}+1$
c) $y=\frac{4}{3}(x-1)^{2}+1$
d) $y=-\frac{4}{3}(x-1)^{2}+1$
e) $y=\frac{4}{3}(x+1)^{2}-1$
f) $y=-\frac{4}{3}(x+1)^{2}-1$
g) $y=\frac{4}{3}(x-1)^{2}-1$
h) $y=-\frac{4}{3}(x-1)^{2}-1$

##  <br> SOLUTIONS

PRACTICE 1: Find three different equations that give U-shaped graphs that balance on my head this way.


Answer: We need to take the equation $y=-x^{2}$ and adjust it so that $x=4$ behaves like zero and all data points are shifted 6 units higher. $y=-(x-4)^{2}+6$ works.
Actually, $y=-2(x-4)^{2}+6$,
$y=-\frac{1}{3}(x-4)^{2}+6$, and $y=-7(x-4)^{2}+6$ work too.

PRACTICE 2: Draw, on the same sets of axes, rough sketches of each the following equations.

$$
\begin{array}{lll}
y=x^{2} & y=1.1 x^{2} & y=0.9 x^{2} \\
y=-x^{2} & y=-1.1 x^{2} & y=-0.9 x^{2}
\end{array}
$$

Answer: Roughly, we get:


PRACTICE 3: Sketch graphs of
a) $y=3(x-5)^{2}$
b) $y=3(x-5)^{2}+4$
c) $y=-2(x+4)^{2}+40$.

Answer: a) A steep U-shaped graph shifted so that $x=5$ behaves like zero.

b) The same as the previous graph, except all data points are 4 units higher.

c) This is a steep upside-down $U$ graph, with $x=-4$ behaving like zero, and all data points 40 units up.


PRACTICE 4: Which of the following equations could have the graph shown?

a) $y=\frac{4}{3}(x+1)^{2}+1$
b) $y=-\frac{4}{3}(x+1)^{2}+1$
c) $y=\frac{4}{3}(x-1)^{2}+1$
d) $y=-\frac{4}{3}(x-1)^{2}+1$
e) $y=\frac{4}{3}(x+1)^{2}-1$
f) $y=-\frac{4}{3}(x+1)^{2}-1$
g) $y=\frac{4}{3}(x-1)^{2}-1$
h) $y=-\frac{4}{3}(x-1)^{2}-1$

Answer: This is an upward-facing U-shaped graph with $x=1$ behaving like zero and all data points shifted down 1 . Only option g) can work.

