edfinity[®]

QUADRATICS 5.3 Steepness

James Tanton

SETTING THE SCENE

We've played with the equation $y = x^2$ and adjust it to create new equations with the same symmetrical U-shaped graph but shifted to different positions in the plane. But as we know from our algebra work, quadratic equations could also possess a coefficient attached to the x^2 term. How do the graphs of the equations $y = ax^2$ appear for different values of a?

We'll explore that issue in this essay, and see that there are an infinitude of U-shaped curves I can choose from to have balance on my head!

STEEPNESS

Consider the equation $y = 2x^2$.

At x = 1, we have $y = 2(1)^2$, double the value we had for the $y = x^2$ equation. At x = 2, we have $y = 2(2)^2$, double the value we had for the $y = x^2$ equation. At x = -33, we have $y = 2(-33)^2$, double the value we had for the $y = x^2$ equation. We see that the heights of all our data points for the equation $y = 2x^2$ are double the heights of the data points for $y = x^2$.

The point at x = 0 is still at height zero.

The graph of $y = 2x^2$ is again a symmetrical Ushaped graph, still centered with vertex at the origin, but it is a steeper curve.

We can make an even steeper graph by playing with $y = 3x^2$ or $y = 20x^2$ or $y = 10000000x^2$! (This third equation will

have a graph that hugs the vertical axis very tightly if we tried to sketch it accurately.)

We can make a shallower U-shaped graph by using a coefficient small than $1. \ \mbox{For instance}, the equation$

$$y = \frac{1}{2}x^2$$

has data points at half the heights of those of $y = x^2$, and

$$y = 0.02x^2$$

has data points at one-fiftieth the heights.

All the data points for $y = 0 \cdot x^2$ have zero height and so this is U-shaped graph that is so shallow that it is flat!

What if we choose a coefficient that is even lower that zero? That is, what if we worked with a negative coefficient?

Consider, for instance, $y = -x^2$.

At x = 1, we have $y = -(1)^2$, the opposite value we had for the $y = x^2$ equation. At x = 2, we have $y = -(2)^2$, the opposite value we had for the $y = x^2$ equation. At x = -33, we have $y = -(-33)^2$, the opposite value we had for the $y = x^2$ equation.

And at x = 0 we still have $y = -(0)^2 = 0$.

The graph is the same as the original $y = x^2$ but now pointing in the negatives.

And we can see now that $y = -2x^2$, for instance, would give a steeper U-shaped graph pointing downwards, and $y = -\frac{1}{33}x^2$ would give a shallow downward pointing graph.

So we have

The graph of $y = ax^2$ is a symmetrical Ushaped graph based at the origin with the value a affecting the steepness of the graph.

If a is positive, the U-shape is upward pointing. If a is negative, the U-shape is downward pointing.

PRACTICE 1: Find three different equations that give U-shaped graphs that balance on my head this way.

PRACTICE 2: *Draw, on the same sets of axes, rough sketches of each the following equations.*

y =
$$x^2$$
 y = 1.1 x^2 y = 0.9 x^2
y = $-x^2$ y = -1.1 x^2 y = -0.9 x^2

PRACTICE 3: Sketch graphs of a) $y = 3(x-5)^2$ b) $y = 3(x-5)^2 + 4$ c) $y = -2(x+4)^2 + 40$.

PRACTICE 4: Which of the following equations could have the graph shown?

a)
$$y = \frac{4}{3}(x+1)^2 + 1$$

b)
$$y = -\frac{1}{3}(x+1)^2 + 1$$

c) $y = \frac{4}{3}(x-1)^2 + 1$

d)
$$y = -\frac{4}{3}(x-1)^2 + 1$$

e)
$$y = \frac{4}{3}(x+1)^2 - 1$$

f)
$$y = -\frac{4}{3}(x+1)^2 - 1$$

g)
$$y = \frac{4}{3}(x-1)^2 - 1$$

h)
$$y = -\frac{4}{3}(x-1)^2 - 1$$

SOLUTIONS

PRACTICE 1: Find three different equations that give U-shaped graphs that balance on my head this way.

Answer: We need to take the equation $y = -x^2$ and adjust it so that x = 4 behaves like zero and all data points are shifted 6 units higher. $y = -(x-4)^2 + 6$ works. Actually, $y = -2(x-4)^2 + 6$, $y = -\frac{1}{3}(x-4)^2 + 6$, and $y = -7(x-4)^2 + 6$ work too.

PRACTICE 2: *Draw, on the same sets of axes, rough sketches of each the following equations.*

y =
$$x^2$$
 y = 1.1 x^2 y = 0.9 x^2
y = $-x^2$ y = -1.1 x^2 y = -0.9 x^2

Answer: Roughly, we get:

a)
$$y = 3(x-5)^2$$

b) $y = 3(x-5)^2 + 4$
c) $y = -2(x+4)^2 + 40$.

Answer: a) A steep U-shaped graph shifted so that x = 5 behaves like zero.

b) The same as the previous graph, except all data points are 4 units higher.

c) This is a steep upside-down U graph, with x = -4 behaving like zero, and all data points 40 units up.

PRACTICE 4: Which of the following equations could have the graph shown?

Answer: This is an upward-facing U-shaped graph with x = 1 behaving like zero and all data points shifted down 1. Only option g) can work.