edfinity ${ }^{\circ}$

QUADRATICS
 5.4 Practicing Graphing

James Tanton

SETTING THE SCENE

We've been adjusting the equation $y=x^{2}$ to give new equations whose graphs are the same U-shaped graph we see from $y=x^{2}$ but shifted horizontally, shifted vertically, and made steeper or broader and upward or downward facing.

For example, if asked to

$$
\text { Sketch } y=3(x-5)^{2}+10
$$

we can first recognize this as the basic $y=x^{2}$ equation

but with $x=5$ behaving like zero

and made steeper with a steepness factor of 3

and with all data points shifted 10 units higher.

The following picture summarises all that we just saw!

We have a steepness factor a, we have $x=h$ behaving like zero, and we have all data values shifted k units higher.

PRACTICE 1: Sketch the graph of

$$
y=-2(x+10)^{2}-7 .
$$

PRACTICE 2: The graph of a quadratic equation has a vertical line of symmetry at $x=3$, and has highest value $y=17$. Which of the following could be an equation for that quadratic?
a) $y=200(x-3)^{2}+17$
b) $y=-200(x-3)^{2}+17$
c) $y=200(x-3)^{2}-17$
d) $y=-200(x-3)^{2}-17$

PRACTICE 3: Sketch a graph for each of the following equations.
a) $y=2-x^{2}$
b) $y=\frac{1}{3}\left(x-\frac{1}{2}\right)^{2}-4$
c) $y=0.0034(x+0.276)^{2}+0.778$
d) $y=200000(x-200000)^{2}-200000$

PRACTICE 4: If $y=a(x+b)^{2}+c$ has a graph passing through the origin and with $(2,3)$ as the vertex, then what is the value of $a+b+c$?
a) $\frac{1}{4}$
b) $1 \frac{3}{4}$
c) $4 \frac{1}{4}$
d) $5 \frac{1}{4}$

PRACTICE 5: Write a quadratic equation that fits this graph.

PRACTICE 6: Write down a quadratic equation whose graph passes through the points $(3,18)$ and $(17,18)$ and has lowest value 5 .

PRACTICE 7: Write down a quadratic equation whose graph passes through the x axis at $x=-2$ and at $x=10$ and passes through the y axis at $y=-6$.

PRACTICE 8: Write down quadratic equations with symmetrical U-shaped graphs possessing the following properties:
a) Crosses the x-axis at 3 and 5 and the y axis at 1000 .
b) Passes through $(4,10),(6,10)$ and $(8,13)$.
c) Has vertex $(5,5)$ and passes through $(4,4)$.
d) Has vertex the origin and passes through the point $(\sqrt{2}, \pi)$.

DIFFERENT-LOOKING EQUATIONS
Let's go back to the opening graphing challenge.
What graph results if we add together the matching data heights of the $y=x^{2}$ and $y=2 x$ graphs?

If you actually made a table of data values that make $y=x^{2}+2 x$ a true number sentence and plotted those points, then you may have been
surprised to see another symmetrical U-shaped curve appear.

And this seems shocking! The graph of $y=x^{2}$ has perfect vertical symmetry, the graph of $y=2 x$ has perfect vertical anti-symmetry, and so there is no reason whatsoever to believe that a graph with perfect vertical symmetry would appear.

Let's prove that the curve we see really is a perfectly symmetric U-shaped curve. We can use our algebra of quadratics for this.

Consider $y=x^{2}+2 x$.

Let's analyse the " $x^{2}+2 x$ " part of this equation using our quadrus method, back in lectures 1 and 2.

Let's draw a square with one piece of area x^{2}.

We're keeping things symmetrical, so we can say that this comes from $x \times x$. We also split the $2 x$ piece into two equal areas. And then we see we need an additional area of 1 .

Adding 1 through our original equation gives

$$
y+1=x^{2}+2 x+1
$$

which we now recognize as

$$
y+1=(x+1)^{2}
$$

Subtracting 1 shows that the equation

$$
y=x^{2}+2 x
$$

is really the equation

$$
y=(x+1)^{2}-1
$$

in disguise.

And this is fabulous! We can now see that the graph of our equation is indeed the perfectly symmetrical U-shaped graph of $y=x^{2}$ with $x=-1$ behaving like zero for the x-values and with all heights shifted down by 1 .

PRACTICE 9: Use algebra to prove that the graph of $y=x^{2}-6 x+10$ is sure to be a symmetrical U-shaped graph.

PRACTICE 10: Use algebra to prove that the graph of $y=x^{2}+8 x-7$ is sure to be a symmetrical U-shaped graph.

Even if there is a coefficient in front of the x^{2} term in a quadratic equation, we can use the quadrus method to rewrite quadratic equations.

PROBLEM: Use algebra to prove that the graph of $y=2 x^{2}+8 x+6$ is sure to be a symmetrical U-shaped graph.

Answer: Notice here that all the terms on the right have even coefficients so it feels natural to divide everything throughout by 2 . (We could follow the quadrus method right away and multiply through by 2 take make a perfect square up front.)

$$
\frac{1}{2} y=x^{2}+4 x+3
$$

The quadrus method suggests we rewrite this as

$$
\frac{1}{2} y+1=x^{2}+4 x+4
$$

So we have

$$
\begin{aligned}
& \frac{1}{2} y+1=(x+2)^{2} \\
& \frac{1}{2} y=(x+2)^{2}-1 \\
& y=2(x+2)^{2}-2
\end{aligned}
$$

And the graph of this is indeed a symmetrical U shaped curve. It has $x=-2$ behaving as zero, all heights are shifted down 2 places, and there is a steepness of 2 .

Even if the algebra is a little more complicated, the quadrus method will show each and every time that the graph of a quadratic equation is sure to be a symmetrical U-shaped graph. It will likely be shifted in the plane. There will likely be a steepness factor. But it is guaranteed to be symmetrical!

THE BIG KEY POINT OF THIS ENTIRE LECTURE

Every quadratic equation $y=a x^{2}+b x+c$ has a symmetrical U-shaped graph.

This is just astounding!

PRACTICE 11 (OPTIONAL): Show that
$y=3 x^{2}+5 x+1$ can be rewritten as $y=3\left(x+\frac{5}{6}\right)^{2}-\frac{13}{12}$, and so is sure to have a symmetrical U-shaped graph.

SOLUTIONS

PRACTICE 1: Sketch the graph of

$$
y=-2(x+10)^{2}-7 .
$$

Answer: We see $x=-10$ is behaving like zero, with a steepness factor of -2 at play (so the graph will be a steep downward-facing Ushape), with all data values shifted down 7 units.

PRACTICE 2: The graph of a quadratic equation has a vertical line of symmetry at $x=3$, and has highest value $y=17$. Which of the following could be an equation for that quadratic?
a) $y=200(x-3)^{2}+17$
b) $y=-200(x-3)^{2}+17$
c) $y=200(x-3)^{2}-17$
d) $y=-200(x-3)^{2}-17$

Answer: We must have a graph like this:

Only option b) can work.

PRACTICE 3: Sketch a graph for each of the following equations.
a) $y=2-x^{2}$
b) $y=\frac{1}{3}\left(x-\frac{1}{2}\right)^{2}-4$
c) $y=0.0034(x+0.276)^{2}+0.778$
d) $y=200000(x-200000)^{2}-200000$

Answer:

a)

b)

c)

d)

PRACTICE 4: If $y=a(x+b)^{2}+c$ has a graph passing through the origin and with $(2,3)$ as the vertex, then what is the value of $a+b+c$?
a) $\frac{1}{4}$
b) $1 \frac{3}{4}$
c) $4 \frac{1}{4}$
d) $5 \frac{1}{4}$

Answer: The graph must look like this:

So we see the equation must be of the form

$$
y=a(x-2)^{2}+3, \text { and so } b=-2 \text { and } c=3 .
$$

The graph passes through $x=0, y=0$ and so

$$
0=a(-2)^{2}+3
$$

must be a true sentence about numbers. This forces $a=-\frac{3}{4}$ and so $a+b+c=\frac{1}{4}$, option a).

PRACTICE 5: Write a quadratic equation that fits this graph.

Answer: We see that it is a graph basically coming from $y=x^{2}$ but with $x=4$ behaving like zero. So we can try

$$
y=(x-4)^{2} .
$$

But we see this is not right: when $x=0$ we get $y=16$, not 6 . We are missing a steepness factor!

Try $y=a(x-4)^{2}$.
Now $x=0, y=6$ should yield a true number sentence, so $6=16 a$ forcing $a=\frac{3}{8}$.

We have

$$
y=\frac{3}{8}(x-4)^{2}
$$

PRACTICE 6: Write down a quadratic equation whose graph passes through the points $(3,18)$ and $(17,18)$ and has lowest value 5 .

Answer: We must have a graph that looks like this:

So let's just use common sense to figure things out.

We want a symmetrical graph and so the line of symmetry must be at $x=10$, midway between 3 and 17 . So the quadratic equation producing this graph must have the form

$$
y=a(x-10)^{2}+5
$$

for some steepness a.

When $x=3$ we should have $y=18$, showing that

$$
18=a(-7)^{2}+5
$$

should be a true number sentence. This forces

$$
a=\frac{13}{49}
$$

So $y=\frac{13}{49}(x-10)^{2}+5$ works.

PRACTICE 7: Write down a quadratic equation whose graph passes through the x axis at $x=-2$ and at $x=10$ and passes through the y axis at $y=-6$.

Answer: We have this picture.

The equation must be of the form

$$
y=a(x-4)^{2}+b
$$

When $x=10, y=0$ and so

$$
0=36 a+b
$$

must be a true number sentence. We have $b=-36 a$.

When $x=0, y=-6$ and so

$$
-6=16 a+b
$$

must also be a true number sentence. We see that

$$
-6=16 a-36 a
$$

showing that $a=\frac{3}{10}$. Consequently $b=-\frac{54}{5}$.

The equation we need is

$$
y=\frac{3}{10}(x-4)^{2}-\frac{54}{5}
$$

PRACTICE 8: Write down quadratic equations with symmetrical U-shaped graphs possessing the following properties:
a) Crosses the x-axis at 3 and 5 and the y axis at 1000 .
b) Passes through $(4,10),(6,10)$ and $(8,13)$.
c) Has vertex $(5,5)$ and passes through $(4,4)$.
d) Has vertex the origin and passes through the point $(\sqrt{2}, \pi)$.

Brief Answers: Sketch a picture of each scenario and use logic to determine which x-value is behaving like zero in each case. Then go from there!
a) $y=\frac{200}{3}(x-4)^{2}-\frac{200}{3}$
b) $y=\frac{3}{8}(x-5)^{2}+\frac{77}{8}$
c) $y=-(x-5)^{2}+5$
d) $y=\frac{\pi}{2} x^{2}$

PRACTICE 9: Use algebra to prove that the graph of $y=x^{2}-6 x+10$ is sure to be a symmetrical U-shaped graph.

Answer: Following the quadrus method we have

$$
\begin{aligned}
& y-1=x^{2}-6 x+9 \\
& y-1=(x-3)^{2}
\end{aligned}
$$

and so

$$
y=(x-3)^{2}+1
$$

The graph of $y=x^{2}-6 x+10$ is thus the graph of $y=x^{2}$ with $x=3$ behaving like zero and with all heights shifted 1 higher. It is thus the same symmetrical U-shape!

PRACTICE 10: Use algebra to prove that the graph of $y=x^{2}+8 x-7$ is sure to be a symmetrical U-shaped graph.

Brief Answer: We get $y+23=(x+4)^{2}$ and so

$$
y=(x+4)^{2}-23
$$

We get the same symmetrical U-shaped graph just shifted in the plane.

PRACTICE 11 (OPTIONAL): Show that
$y=3 x^{2}+5 x+1$ can be rewritten as $y=3\left(x+\frac{5}{6}\right)^{2}-\frac{13}{12}$, and so is sure to have a symmetrical U-shaped graph.

Answer: Let's follow the quadrus method. First multiply three by 3 to create a perfect square up front.

$$
3 y=9 x^{2}+15 x+3
$$

Now multiply though by 4 to make an even middle term.

$$
12 y=36 x^{2}+60 x+12
$$

Draw the square.

$$
12 y+13=(6 x+5)^{2}
$$

Pause here as we have $6 x$ in the parentheses, and not just x. Since $(6 x+5)=6\left(x+\frac{5}{6}\right)$ we can rewrite matters as

$$
12 y+13=36\left(x+\frac{5}{6}\right)^{2}
$$

So

$$
12 y=36\left(x+\frac{5}{6}\right)^{2}-13
$$

giving

$$
y=3\left(x+\frac{5}{6}\right)^{2}-\frac{13}{12}
$$

