# QUADRATICS <br> 6.2 The Full Power of Symmetry 

James Tanton

##  <br> SETTING THE SCENE

Through the power of symmetry we've started graphing quadratic equations with ease. We noticed, for instance, that for

$$
y=(x-3)(x-7)+10
$$

the $x$ values 3 and 7 are interesting and thus led us to two symmetric points on the symmetric curve. Then common sense allowed us to swiftly sketch the equation's graph.


And for

$$
y=x(x-4)+7
$$

the $x$ values 0 and 4 are interesting.


But most quadratic equations are presented in a different, namely, in the form

$$
y=a x^{2}+b x+c
$$

Is there a way to identify interesting $x$ values in such equations?

## 

THE FULL POWER OF GRAPHING

Consider this example.

PROBLEM: Sketch a graph of $y=x^{2}-4 x+7$.

There are no interesting $x$ values immediately staring us in the face here. What can we do?

Since we are focused on $x$ values, is there anything we can do with the " $x^{2}-4 x$ " part of the equation?

The only thing I can think to try is to factor out a common factor of $x$ from those two terms.
Write

$$
y=x(x-4)+7
$$

Oh! And now we see this is the previous problem we just discussed with interesting $x$ values 0 and 4 .

So that's the key!

If presented with a quadratic expression for which you don't see any obvious interesting $x$ values that lead to a pair of symmetric data points, try doing some basic algebra on the " $x$ part" of the equation.

PROBLEM: Sketch a graph of $y=3 x^{2}+9 x+4$.

To find some interesting $x$ values, let's play with the " $3 x^{2}+9 x$ " part of the equation. Shall we factor out a common $x$ or $3 x$ ? Well, let's just try $3 x$ first (and if it is not useful we can go back and then just try $x$ ).

$$
y=3 x(x+3)+4
$$

Ah! This is good. We see that $x=0$ and $x=-3$ are interesting.

$$
\begin{aligned}
& x=0 \quad \rightarrow \quad y=4 \\
& x=-3 \quad \rightarrow \quad y=4
\end{aligned}
$$

We now have two symmetrical points on a symmetrical graph. The line of symmetry is at $x=-\frac{3}{2}$.


The vertex of the parabola will be on this line of symmetry. Let's put $x=-\frac{3}{2}$ into the second form of the equation. (It looks a bit easier.)

$$
x=-\frac{3}{2} \rightarrow y=3\left(-\frac{3}{2}\right)\left(\frac{3}{2}\right)+4=-\frac{11}{4}
$$

The vertex is below the $x$ axis.


PRACTICE 1: Sketch a graph of
$y=7 x^{2}+7 x-100$.

Here's a curious challenge.
PROBLEM: Find $k$ so that $y=-2 x^{2}+8 x+k$ gives 43 as the largest possible value for $y$.

Let's just follow our nose on this one and see how far we can get.

Let's factorise the first two terms, perhaps as

$$
y=2 x(-x+4)+k
$$

We see that 0 and 4 are interesting $x$ values: they both yield $y=k$.


Here l've drawn a picture with $k$ positive. This might not be right-the value could be negative-but let's just go with this for now.

The line of symmetry must be at $x=2$. For this value we get

$$
y=2(2)(-2+4)+k=k+8 .
$$

Hmm. This is a larger than $k$. Oh, we must have a picture as follows.


The graph is meant to have largest value 43 so we must have $k+8=43$ giving $k=35$. Done!

PRACTICE 2: Which value of $r$ forces the graph of $y=3 x^{2}+6 x+r$ have 5 as the smallest possible $y$ value?

PRACTICE 3: Find a negative value for $a$ so that $y=x^{2}+a x+a$ has smallest possible value -3 .

PRACTICE 4: Find a formula for the location of the line of symmetry of a general quadratic equation $y=a x^{2}+b x+c$.

PRACTICE 5: Sketch the graph of $y=-x^{2}+8 x+21$. What is the largest possible $y$ value this equation can produce? What is the vertex of this graph? Make a guess as to what it means to rewrite $y=-x^{2}+8 x+21$ in "vertex form."

##  SOLUTIONS

## PRACTICE 1: Sketch a graph of

 $y=7 x^{2}+7 x-100$.Answer: We have $y=7 x(x+1)-100$ showing that both $x=0$ and $x=-1$ are interesting values.


PRACTICE 2: Which value of $r$ forces the graph of $y=3 x^{2}+6 x+r$ have 5 as the smallest possible $y$ value?

Answer: We have $y=3 x(x+2)+r$ showing that the line of symmetry is halfway between $x=0$ and $x=-2$, namely, at $x=-1$. The vertex is on this line.

At $x=-1$ we have $y=3-6+r=r-3$.


We must have $r-3=5$ giving $r=8$.

PRACTICE 3: Find a negative value for $a$ so that $y=x^{2}+a x+a$ has smallest possible value -3 .

Answer: We have $y=x(x+a)+a$.

(The picture assumes $a$ is negative.)
We see that the line of symmetry is at $-\frac{a}{2}$ and for $x=-a / 2, y=\left(-\frac{a}{2}\right)\left(\frac{a}{2}\right)+a=a-\frac{a^{2}}{4}$
We see we need

$$
a-\frac{a^{2}}{4}=-3 .
$$

That is, we need $a^{2}-4 a-12=0$.
Solving

$$
\begin{aligned}
& (a-2)^{2}=16 \\
& a-2=4 \text { or }-4 \\
& a=6 \text { or }-2 .
\end{aligned}
$$

Choose $a=-2$.

PRACTICE 4: Find a formula for the location of the line of symmetry of a general quadratic equation $y=a x^{2}+b x+c$.

Answer: We have $y=x(a x+b)+c$ which shows

$$
\begin{aligned}
& x=0 \quad \rightarrow \quad y=c \\
& x=-\frac{b}{a} \rightarrow y=c
\end{aligned}
$$

The line of symmetry is halfway between $x=0$ and $x=-\frac{b}{a}$, which is at $x=-\frac{b}{2 a}$.

PRACTICE 5: Sketch the graph of $y=-x^{2}+8 x+21$. What is the largest possible $y$ value this equation can produce? What is the vertex of this graph? Make a guess as to what it means to rewrite $y=-x^{2}+8 x+21$ in "vertex form."

Answer: We have $y=x(-x+8)+21$, with line of symmetry at $x=4$.


The largest value $y$ value occurs at $x=4$ with $y=4(4)+21=37$. The vertex is $(4,37)$.
"Vertex form" of the equation probably means a form of the equation that makes the vertex clear in the equation. Going back to last lecture, we see this graph as the $y=x^{2}$ shifted in the plane with negative steepness. We have

$$
y=a(x-4)^{2}+37
$$

When $x=0$ we should have $y=21$. This gives

$$
21=16 a+37
$$

Showing that $a=-1$.

Thus

$$
\begin{aligned}
y & =-x^{2}+8 x+21 \\
& =-(x-4)^{2}+37
\end{aligned}
$$

Note: We could have deduced the steepness was going to be $a=-1$ by looking at the coefficient of the $x^{2}$ term in the original equation. The $x^{2}$ terms here

$$
-x^{2}+8 x+21=a(x-4)^{2}+37
$$

will match only for $a=-1$.

