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THE JOSEPHUS PROBLEM 
 

 
A horrific story dating back some 2000 year tells of a soldier Flavius Josephus (37 CE – ca.100 CE) being 
trapped in a cave with 40 fellow soldiers about to be captured by Roman forces. Rather than face the 
fate of being Roman slaves—or worse—they decided to commit collective suicide. They stood in a circle 
and counted off every third person, who was either to kill himself on the spot or, if incapable of 
conducting the act, be killed by his neighbors. A final soldier would be left standing who would have to 
commit suicide with no aid.  
 
When the soldiers conducted this, Josephus and just one other man found themselves still standing. 
They decided they could not continue on and both surrendered to the Romans.  
 
Horrors aside, this question leads to an interesting mathematical question. Where should one stand in 
the circle to be the last person standing in this counting act? 
 
In this essay we take a less gruesome tact to this story and adjust the puzzle by counting off every 
second person.  
 

EXPLODING DOTS Topic: 
 

Experience 2: Understanding the binary codes of the 1 2← machine.  
 
Suggested Grade Level: 
 
High-school and up. 
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THE JOSEPHUS PROBLEM 
 

Present the following problem to your students. (You, of course, have the option to explain the historic 
origin of this problem if you wish, but it could be best to leave that aside.)  
 

A number of students, N of them, numbered 1 through N , sit in order in a circle. Walking 
around the circle many times the teacher taps each student on the shoulder alternately 
saying the words “in” and “out” as he does each tap. Any student tapped with the word “in” 
stays in place and those tapped with the word “out” must leave the circle and are out of the 
game. Even though the circle thins out as this game is played, the teacher keeps strolling 
around the chairs, tapping each remaining student on the shoulder—in, out, in, out, in, out, 
… —until one student remains. That lucky student wins a lifetime supply of really cool math 
books.  
 
Each time the teacher plays this game with a group of students, he always starts by tapping 
the shoulder of student 1 with the word “in.” 
 

As practice, consider the situation with 5N =  students in a group. The teacher keeps student 
1 in, sends student 2 out, keeps student 3  in, sends student 4  out, keeps student 5  in, 
sends student 1 out, keeps student 3 in, sends student 5 out to then leave student 3 as the 
winner.  
 

Write ( )W N for the number of the winning student in a game played with N students.  

We have ( )5 3W = . 
 

a) Check that ( )12 9W =  and ( )16 1W = . 
b) If you like, complete the following table and look for patterns. Can you explain any 

patterns you see?  

 
 

But here is the real question. 
 

Write the number N  in its binary 1 2← machine code. 
Move the leading 1 from the front of the code to the back. 
Then ( )W N is the number with that binary code. 

 

For example, 12N =  has code 1100 . Move the front 1to the back and get 1001, which is the 
code for 9 . And lo and behold, ( )12 9W = ! Also 5N = has code 101, move the front 1 to the 

back and get 011which is the code for  3 . And indeed, ( )5 3W = . Whoa! 
 

c) Can you explain this mysterious connection to binary codes? 
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Some Things Students Might Notice, Say, or Ask  

1. No!  
 
And this could be meant in one of two ways: that they can’t explain what is going on, or that 
they simply reject the request to try to explain what is going on! 

 
2. This feels like a really weird and hard puzzle. 

 
3. “I don’t get it.” 

 
The thing to do here is to conduct some more practice examples. One can write out on paper 
what is going on in any particular example and collect data swiftly. For example, each line here 
shows which student is sent out in turn for 5N =  students.  (In practice, one wouldn’t draw a 
separate new line each time a student number is crossed out.)   

 

 
  

It doesn’t take too much effort to get some more data values. 
 

 
  

One can see that eight, for example, is 1000  in binary and moving the front one to the back 
gives 0001 , which is the code for 1. And indeed ( )8 1W = .  

 
We can check that the claim of the puzzle keeps working! 

 
 

4. Every student with an even number, 2, 4, 6, 8, 10, …, is eliminated right away. Only odd-
numbered students have a hope of winning. (Indeed, it does look like that ( )W N  always an 

odd value.) 
 

5. In binary, the odd numbers are the ones with final digit 1. 
 

6. “I am intrigued. But I don’t know how or where to begin thinking about this!” 
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SOLVING THE PUZZLE 
 

See EXPERIENCES 2: Understanding the binary codes of a 1 2← machine.   
 
 
The first thing to note is that every student labeled with an even number is eliminated during the 
teacher’s first round of the circle.  
 
For instance, with 12N =  students,  we are soon left playing a game with the six students numbered  
1,3, 5, 7, 9, and 11, with student 1 acting as the first student, student 3 as the second student, student 5 
as the third student, and so on.  
 

 
 
Actually, we see that k th student among the odd-number labels is student number 2 1k − in the 
original numbering system. The winnof the six-person game is student number ( )6W , and this is 

student ( )2 6 1W −  in the original numbering system. Thus we deduce that ( ) ( )12 2 6 1W W= − . 

 
In general, we have 
 
 ( ) ( )2 2 1W N W N= − . 

 
 
Consider 13N = , an example with an odd number of students in the circle. Again, all the even-
numbered students are immediately eliminated, and next eliminated is student 1. 
 

 
This leaves us playing a game with 6 students. The k th student in this game is student number 2 1k + in 
the original numbering system.  We see this time that ( ) ( )13 2 6 1W W= + .  

 
In general, we deduce  
 
 ( ) ( )2 1 2 1W N W N+ = + . 
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Actually, from ( )1 1W =  and these two relations we can now compute all the values ( )2W  and ( )3W , 

( )4W  and ( )5W , ( )6W and ( )7W , and so on.  

 

Do our two relations explain the curious connection to binary codes? To be clear, we want to show that 
if 1 ...N ab cd=  in binary, then ( ) ... 1W N ab cd= in binary. Hmm. 

 
This claim is true for 1N =  , since ( )1 1W = . 

 
The claim is true for the 2N =  and 3N = , the numbers with two-digit binary codes. 
 

 
( ) ( )
( ) ( )

2 2

2 2

2 10 01 1

3 11 11 3

W W

W W

= = =

= = =
 

 
Comment: I guess we need to distinguish between base-two and base-ten codes. Let’s use the subscript 
2 to denote a binary code from now on. 
 
The claim is true for the 4,5,6,7N = , the numbers with three-digit binary codes. 
 
 ( ) ( )2 24 100 001 1W W= = =  

( ) ( )2 25 101 011 3W W= = =  

( ) ( )2 26 110 101 5W W= = =  

( ) ( )2 27 111 111 7W W= = =  

 
Okay, let’s generalize. Suppose we know that the claim is true for all numbers with k digits in their 
binary codes. Does it follow that it is also true for all numbers with 1k +  digits in their binary codes? 
 
Yes! 
 
 
Here’s why. 
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Suppose M has binary code 21 ...ab cd  with 1k +  digits. 
 
 If M is even, 0d =  and 2M N=  with 21 ..N ab c= , which is a number with just k digits.  

 Since N has k digits, we know ( ) 2.... 1W N ab c= .  

 
But we also have  
 

( ) ( ) ( )
2

2

2

2 2 1
2 ... 1 1

.... 10 1

.... 01

W M W N W N
ab c

ab c
ab c

= = −

= × −
= −
=

. 

 
 which is 2... 1ab cd , as hoped. 
 
 
 If M is odd, 1d =  and 2 1M N= +  with 21 ..N ab c= , which is a number with just k digits.  

 Since N has k digits, we know ( ) 2.... 1W N ab c= .  

 
But we also have  
 

( ) ( ) ( )
2

2

2

2 1 2 1
2 ... 1 1

.... 10 1

.... 11

W M W N W N
ab c

ab c
ab c

= + = +

= × +
= +
=

. 

 
 which is 2... 1ab cd , as hoped. 
    
 
So from the claim being true for all numbers with three-digit binary codes, it follows that it is also true 
for all numbers with four-digit binary codes, and then for all numbers with five-digit binary codes, and so 
on, and so on.  
 
The claim about binary codes is always true!  
 
(My brain hurts!) 
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EXTENSION 
 
Every solved problem, of course, is an invitation to explore and play more. Might your students enjoy this 
exploration? 
 

Wild Exploration 1:  Do the following observations make immediate sense? 
 

a) If the initial count of students sitting in the circle is a power of two, then student 1 is sure to 
win. 

b) If the initial count of students sitting in the circle is one less than a power of two, then the 
highest numbered student is sure to win. 

c) If the initial count of student is one more than a power of two (and not two), then student 3 is 
sure to win.  

 
Wild Exploration 2:  Continuing the table of data values it seems there is a curious pattern.  
 

 
  
Between each power of two the values of the students who win run through the consecutive odd 
numbers, with the pattern being “reset to 1” at each power of two.  
 
Is this pattern indeed true? 

 
Wild Exploration 3:   
a) Instead of counting in-out-in-out-in-out-… around the circle the teacher counts out-in-out-in-out-
in-… instead. Care to analyse who wins this variation of the game? 
 
b) Suppose the teacher deems every third student as “in” following the cycle out-out-in-out-out-in-
out-out-in, and so on. Care to analyse who wins in this variation? Or more generally, what if the 
teacher followed the cycle setting every r th student as “in.” (Part a) asks about the case 2r =  and 
we just asked about the 3r =  case.) Can you develop a general theory about winners in general 
games? 
 
c) Who wins in games with the teacher following a repeated cycle of “in-out-in, in-out-in, in-out-in”? 

 
Wild Exploration 4:  Let’s go back to the version of the game from this essay.  
If ( ) 2...W N ab cd= , prove that ( ) 22 .... 0W N ab c d=  and ( ) 22 1 .... 1W N ab c d+ = . 

 
 


