
 
 
 

 
 

 
 
 
 
 
 
 
 

 

A SEGUE INTO  
PARTIAL FRACTIONS 

 
 
 

 
 
 
 
 
 
 
 
 
 
  



JUG FILLING 
 
Here’s a classic puzzle.  
 
You are handed a 3-liter jug and a 5-liter 
jug, neither possessing markings of any 
kind. Using these jugs is it possible to draw 
exactly one liter of water from a well? 
 
As one is not given the means to measure 
the exact contents of a partially filled jug, 
there are essentially only three meaningful 
maneuvers. 
 
1. Completely fill an empty jug from the 
well.  
 
2. Completely empty a full jug into the well. 
 
3. Pour water from one jug into another, 
completely filling or emptying a jug in the 
process.  
 
 
Here is one solution to the problem.  
 

 
 
This solution involves filling up the 3-liter 
jug twice and emptying the 5-liter jug once. 
As  

2 1 1× − × =3 5 , 
this does indeed leave behind precisely one 
liter of water. 
 
 

 
Challenge 1:  
a) Find another solution to the problem. 
b) Find two more solutions to the 
problem. (If that feels too hard, read on 
and come back to this later.) 

 
 

Challenge 2: 
We found two integers a and b so that  
 

3 5 1a b+ = . 
 
(We had 2a = , 1b = − .) 
 
a) Find another pair of integers that 
satisfy the equation 3 5 1a b+ = . 
 
b) Find two more pairs of integers that 
satisfy 3 5 1a b+ = . 
 
c) Show that each of your solutions 
corresponds to a practical means of 
obtaining 1 liter of water from a 3-liter 
and a 5-liter jug.   
 
[Now go back and answer 1b)?] 

 
Challenge 3: 
a) Suppose, instead, one is given a 4-liter 
jug and a 9-liter jug (again with no 
markings). Explain how to obtain exactly 
one liter of water from a well. 
 
b) Is it possible to obtain one liter of 
water using a 9-liter jug and a 16-liter 
jug? 
 
c) Is it possible to obtain one liter of 
water using a 9-liter jug and a 21-liter 
jug? 
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Challenge 4: Explain why each of the 
following three equations cannot be 
solved with integer values for a  and b . 
 

4 10 1

9 21 1

15 35 1

a b

a b

a b

+ =

+ =

+ =

 

 
 
THE SAME PUZZLE IN DISGUISE 
 

Challenge 5: The number 15 has proper 

factors 3 and 5. Is it possible to write 
1

15
 

as a combination of the fractions 
1
3

 and 

1
5

? That is, are there integers a and b

such that  
1

15 3 5
a b

= + ? 

 
If so, find some integers that work. (Is 
there more than one possibility?) If no 
integers can work, explain why not. 

 
 

Challenge 6:  
a) The number 36 can be written as 
36 4 9= × . Find a pair of  integers a and 

b  that expresses 
1
36

as a combination of 

1
4

and 
1
9

. That is, find an integer solution 

to  
1

36 4 9
a b

= + . 

 
b) Find an integer solution to  

1 1
144 9 16 9 16

a b
= = +

×
. 

 
Challenge 7: We have 189 9 21= × . Is 
there an integer solution to  

1 1
189 9 21 9 21

a b
= = +

×
? 

Explain your thinking. 
 
 
WHY STAY IN BASE TEN?  
LET’S GO TO BASE x! 
 

Challenge 8:  
We have  

 
( ) ( )2 4 2 2x x x− = + × − . 

 
Is there an integer solution to  

2

1
2 24

a b
x xx

= +
+ −−

? 

 
Comment: The notion of an “integer” 
might be too closely tied to base-ten 
thinking. If there are no integers a and b

that work for 2

1
4x −

, might there be 

real number solutions instead?  
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OPTIONAL APPENDIX:  
THE EUCLIDEAN ALGORITHM 
 
The jug-filling problem is tied to a deep 
number-theory question: When can a 
specific integer be written as a combination 
of two given integers? 
 
For example, we saw that the number 1 can 
be written as a combination of 3 and 5, 
  
 ( ) ( )3 2 5 1 1+ − = , 

 
but it is impossible to write 1 as a 
combination of 9 and 21. (If 9 21 1a b+ =
has integer solutions, then the 1 would be a 
multiple of three.)  
 
The great mathematician Euclid of the third 
century BCE established that the greatest 
common factor of any two numbers a and 
b can be written as an integer combination 
of a and b . (And by multiplying through, so 
too can any multiple of the greatest 
common factor be so written.)  
 
Here are some notes on how to “lean in” to 
the Euclid’s work via more related play.  
 
THE 9-16 GAME 
The numbers 9 and 16 are written on a 
white board.  

 
Two people will take turns writing a positive 
number on the board, not already there, 
that represents the difference of two 
numbers currently scribed. They will keep 
doing this until one player cannot make a 
move. The last player who is able to take a 
turn is the winner of this game. 
 

For example, there is no choice but for the 
first player to write 7, the difference of 9 
and 16. 

 
There is no choice for the second player 
either. She must now write 2, the difference 
of 7 and 9.  

 
From this point on players have choices. 
 

a) Play the 9-16 game several times. Is there 
a player that always seems to win? What do 
you notice about the entire set of numbers 
that appear on the board at the end of any 
game? 
 
b) Play a 7-18 game. What do notice about 
the set of numbers that appear on the 
board by the end of a game? In playing this 
game, which player always wins? 
 

c) Play the 11-25 game. Do you want to play 
first or second to be the winner? 
 
d) Play the 15-21 game. What happened 
this time? 
 

e) Find a pair of (whole) numbers, if you 
can, that satisfy the equation 
 

. 
  
f) Using a 15-liter jug and a 21-liter jug, is it 
possible to obtain precisely one liter of 
water from a well?  
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SOME THOUGHTS 
 
In playing the 9-16 you will notice that all 
the numbers 1 through 16 appear on the 
board. (If you knew this in advance, you 
would thus opt to play second to secure a 
win.) 
 
Also, the 7-18 game produced all the 
numbers 1 through 18 and the 11-25 game 
all the numbers 1 through 25. (You would 
want to play second in the first of these 
games and first in the second.)  
 
Alas, the 15-21 game did not produce all 
the numbers 1 through 21, only the 
multiples of 3 within this range. And this 
makes sense: Since 15 and 21 are already 
multiples of 3 their difference will again be 
a multiple of 3, as will be all the differences 
of the differences.   
 
What it curious about this game, however, 
is that all the multiples of 3 from 3 to 21 do 
appear. (And in the previous games, all the 
multiples of 1 appear.) It is not immediately 
clear why. 
 

Challenge 9: 
a) We predict that a 14-22 game will 
produce all the multiples of ___ up to 22. 
Does it? 
b) What is your prediction for a 28-84 
game? Play it and see if you are correct.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE EUCLIDEAN ALGORITHM 
 
Let’s conduct a simplified version of the 15-
21 game. We’ll just record two numbers at 
a time (starting with the initial two numbers 
15 and 21) and simply alter the larger 
number by subtracting the smaller from it. 
(For ease of typesetting, we’ll use notation 
that looks like fraction notation, but we 
don’t mean to imply fractions.)  

 
Let’s repeat this process, always subtracting 
the smaller number from the larger, until 
we can go no further without heading into 
zero or negative values. 
 

 
This leads to a common value of 3. And 
what does 3 have to do with the original 
two numbers? It’s certainly a common 
factor of 15 and 21. In fact, it is the larger of 
the two common factors these numbers 
possess. 
 
As another example, let’s conduct this 
process for the pair 42 and 60. 
 

 
 
Notice that 6 is the largest common factor 
42 and 60 possess.  
 
We have the following claim: 
 
Repeatedly subtracting the smaller from the 
larger for a pair of numbers eventually 
produces two identical (positive) numbers. 
That common result is the greatest 
common factor of the original pair of 
numbers.   
 
Our goal is to prove this is true. 
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THE PROOF 
 
First note that if two numbers a  and b  are 
each multiples of 3, say, then a  and a b−  
would still both remain multiples of three. 
And conversely, if we were told that a  and 
a b−  both are multiples of three, then we 
know that the original numbers a  and b  
were too. (The two numbers a  and a b−
differ by b .)  
 
That is, if 3 is a common factor of a  and b , 
then it is a common factor of a  and a b− , 
and conversely.  
 
There is nothing special about the number 3 
in this argument. In general, we can say 
 
The common factors of a  and b  are the 
same as the common factors of a  and 
a b− . 
 
So in playing our subtraction game of 
repeatedly subtracting the smaller number 
from the larger, we are not changing the 
common factors the numbers possess. So, if 
we play the game until we reach a repeated 
value 
 

 
 
we know that the common factors of a  and 
b  are precisely the same as the common 
factors of d  and d .  Thus, whatever the 
factors of d are, they are the common 
factors of a  and b . In particular, d is the 
largest common factor of d  and d  and so 
d must be the largest common factor of a  
and b ! 
 
This establishes the result.  
  
 

Comment 1: Technically we should verify 
that the process of repeatedly subtracting 
the smaller number from the larger does 
eventually stop to produce a repeated 
value. This follows from the fact that as we 
play the game, we keep producing smaller 
pairs of numbers without ever allowing 
ourselves to enter the realm of negative 
numbers. There is a lower bound on the 
game (namely that of zero) that stops us 
from going on forever. 
 
Comment 2: We have actually established 
more than we set out to do. We proved 
that the common factors of a  and b  are 
the same as the factors of d , with d  being 
the largest common factor.  
 

All common factors of a pair of numbers are 
factors of the greatest common factor.  
 

For example, the pair 36 and 48 have 
common factors 1, 2, 3, 4, 6, and 12, and 
each of these common factors is indeed a 
factor of the greatest common factor 12.  
 
GOING EVEN FURTHER 
 
There is more to be said. 
 
Consider again the 15-21 example. 
 

 
 

Let’s write this out again but keep track of 
which number was subtracted from which 
as we go along, expressing every quantity in 
terms of the original two numbers. 

( )

( )

( )

15 15
21 21 15

15 21 15 2 15 21
21 15 21 15

2 15 21 21 15 3 15 2 21
21 15 21 15

3 15 2 21 3 15 2 21
21 15 3 15 2 21 3 21 3 15

→
−
− − × −

→ =
− −

× − − − × − ×
→ =

− −
× − × × − ×

→ =
− − × − × × − ×
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The final answer, of course, is just 
3
3

 in 

disguise.  
 
But notice, this procedure has shown for us 
precisely how to write the number 3, the 
greatest common factor of 15 and 21, as a 
combination of the original two numbers 15 
and 21. We have 
  
 3 3 15 ( 2) 21= × + − ×  
and also 
  
 3 ( 4) 15 3 21= − × + × . 
 
This method of finding the greatest 
common factor of two numbers provides a 
means to solve jug-filling problems!  
 
 

Challenge 10: Use this method to find the 
greatest common factor of 3 and 5. Use it 
to find two solutions to the equation 
3 5 1a b+ = .  

 
  

Challenge 11: Write the greatest 
common factor of 42 and 60 as a 
combination of these two numbers.  

 
In the 9-16 game we were surprised to see 
all the numbers 1 though 16 appear.  
 
It is clear that the greatest common factor 
of 9 and 16 is 1. As we obtain the number 1 
by performing repeated differences, this 
means the number 1 will eventually appear 
as two players play the 9-16 game. As soon 
as the number 1 appears, players can then 
choose 16 minus 1, then 15 minus 1, and so 
on. Thus all the numbers 1 through 16 
appear. 
 

Challenge 12: Explain why all the 
multiples of three from 3 to 27 will 
appear in a 15-27 game.  

 

We’re now ready to state probably the 
most important theorem of all of number 
theory. This result was first written and 
proved by Greek mathematician Euclid (ca. 
300 B.C.E.) 
 

                                                                      
THE EUCLIDEAN ALGORITHM 
Given two positive integers a  and b , it is 
possible to obtain their greatest common 
factor d  by repeatedly subtracting the 
smaller number from the larger.  
 
It is also always possible to find integers 
x  and y  so that 

d ax by= + . 
                                                                      

The word algorithm means “method” or 
“procedure.” 
 
Notation 
Mathematicians tend to use the word 
divisor rather than factor. And the greatest 
common divisor (that is, factor) d of two 
numbers a and b is denoted 
 

gcd( , )d a b= . 
For example 

gcd(42,60) 6
gcd(9,16) 1
gcd(35,50) 5

=
=
=
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THE EUCLIDEAN ALGORITHM  
FOR POLYNOMIALS? 
 

Challenge 13:  
Consider  

( ) 3 2 3p x x x x= + + −  

and  
( ) 2q x x x= − . 

 
a) Show that 1x −  is a “common factor” 
of ( )p x  and ( )q x . 

 
b) Do you think 1x − is worthy of being 
dubbed the “greatest common factor” of 
( )p x  and ( )q x ? 

 
c) Are there numbers A and B such that 
the following holds? 
  

( ) ( )3 2 21 3x A x x x B x x− = + + − + −  

 
d) If the answer to c) is no, might there 
instead be polynomials ( )A x  and ( )B x  

such that the following holds? 
 

( ) ( )
( ) ( )

3 2

2

1 3x A x x x x

B x x x

− = ⋅ + + −

+ ⋅ −
 

 
 

 
SOME ADDITIONAL PRACTICE  
 

Question 1: Find the greatest common 
factors of  

a) 420 and 330 
b) 62 and 80 
c) 91 and 73 
d) 618 and 336   

 

Question 2:  
a) Find values for a and b so that 
 

3 45 33a b= + . 
 

b) Suppose you are given unmarked 45-
liter and 33-liter jugs and you wish to 
obtain exactly three liters of a water from 
a well. Describe a method that allows you 
to accomplish this feat. 
 
c) Is it possible to obtain exactly 10 liters 
of water using 33- and 45-liter jugs? 
Explain. 

 

Question 3 a) Suppose n is a counting 
number. Prove or give a counter example 
to the claim: gcd( , 1) 1n n + = . 
 

b) Describe all the counting numbers for 
which gcd( , 2) 2n n + = . Explain your 
answer. 

 

Question 4: Suppose m is a positive 
integer. What is gcd(0, )m  and why?  

 

Question 5: True or False (and how do 
you know?): The greatest common divisor 
of two consecutive square numbers is 
sure to be 1. 

 

Question 6: a) How many counting 
numbers n  between zero and 1024 
satisfy gcd( ,1024) 1n = ? 
 

b) How many counting numbers n  
between zero and 1200 satisfy 
gcd( ,1200) 1n = ?  

 


