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PART 1 

 
Arithmetic: The Gateway to All 
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Algebra is the practice of avoiding the tedium of doing arithmetic problems one instance at a time, to 

take a step back and see a general structure to what makes arithmetic work the way it does, and so open 

one's mind to more than the one view of what arithmetic, and mathematics, can be. 

 

Part 1 
 

0. It All Starts with a Dot 

Chapter 1: The Counting Numbers and the Basis of Arithmetic   Another Volume 
 

1. Humankind’s First Mathematics.  
2. Addition 
3. Repeated Additions 
4. The Repeated Addition Table 
5. Repeated Addition in the “Real World” 
6. Ordering Additions 
7. Ordering Multiplications 
8. The Vinculum 
9. Parentheses/Brackets 
10. A String of Sums; A String of Products 
11. Chopping up Rectangles 
12. Fun with Long Multiplication 
13. Some Factoring 
14. Summary of all the Rules of Arithmetic 

 
Chapter 2: Playing with the Counting Numbers     Another Volume 
 

15. The Power of a Picture 
16. Even and Odd Counting Numbers 
17. Division 
18. Factors, Prime Numbers, and Composite Numbers 
19. Figurate Numbers 

 
Chapter 3: The Integers        Another Volume 
 

20. New Numbers: The Opposites of the Counting Numbers 
21. Distributing the Negative Sign 
22. Interlude: Milk and Soda 
23. The Rules of Arithmetic and Negative Numbers 
24. Making Sense of Rule 8: “Chopping up Rectangles” 
25. Why Negative times Negative is Positive 
26. Interlude: Finger Multiplication 
27. Even and Odd Negative Integers 
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Chapter 4: The Power of Place Value      Another Volume 

28. A Mind-Reading Trick 
29. A Story that is Not True 
30. More Machines 
31. English is Weird 
32. Addition 
33. Multiplication 
34. Subtraction 
35. Division 
36.  Advanced Algebra is not that Advanced Really. 

 
Chapter 5: Fractions: Not Getting them is Not your Fault   Another Volume 
 

37. It’s Not Your Fault 
38. One Somewhat Robust Model of Fractions 
39. One More Fraction Property 
40. Opening up our Fraction Rules as Wee Bit 
41. All Fraction Arithmetic in One Hit 

 
Chapter 6: Fractions: Understanding their Schoolbook Arithmetic and the Mathematical Truth 
          Another Volume 

42. Fractions: Where are we? 
43. Fractions the School Way: “Parts of a Whole” 
44. Adding and Subtracting Fractions the School Way 
45. Multiplying Fractions the School Way: The word “of” 
46. Dividing Fractions the School Way: “Keep, Change, Flip” 
47. Mixed Numbers 
48. Percentages 
49. Tips, Percentage Increase and Percentage Decrease 
50. Comparing Fractions 
51. The Mathematical Truth about Fractions: Rule 10 
52. All the Rules of Arithmetic in One Place 
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Chapter 7: Decimals, and Scientific Notation, Rounding, and Significant Figures 
          Another Volume 
Discovering Decimals 

53. Fractions as Decimals 
54. Finite Decimals 
55. Decimal Arithmetic 
56. Every Fraction is a Repeating Decimal 
57. A Decimal that Does Not Repeat is Not a Fraction 
58. VERY OPTIONAL ASIDE: A Historically Famous Example of a Number that is Not a Fraction 
59. The Powers of Ten 
60. Scientific Notation 
61. Rounding 
62. Significant Figures 
63. Order of Magnitude 

 
Chapter 8: Beyond Base 10: All Bases, All at Once    Another Volume 
 

64. A Famous Mystery about Prime Numbers 
65. Revisiting Division 
66. A Problem! 
67. Resolution 
68. The Opening Mystery 
69. “Infinite Polynomials” 
70. COMPLETELY OPTIONAL AND COMPLETELY WILD: Base One-and-a-Half 

 
 

Part 2 
 
Introduction to Part 2        Page 9 
 
Chapter 9: Solving, Graphing, Seeing      Page 11 
 

71. Math is a Language 
72. Collecting Math Data 
73. Visualizing Data: Graphs 
74. What it Means to Solve an Equation or Inequality 
75. The Art of Balancing: What we say is True about Equality 
76. Another Algebraic Move 
77. What we say is True about Inequality 
78. Squares and Square Roots 
79. Going Rogue 
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Chapter 10: Lines        Page 95 
 

80. Do Straight Lines Exist?  
81. The Equation of a Line 
82. One Type of Equation for All Lines 
83. Parallel Lines 
84. Solving Equations Simultaneously via Graphing 
85. Solving Equations Simultaneously without Graphing 
86. The Expected Schoolbook Approaches 

 
Chapter 11: Proportional Reasoning      Page 185 
 

87. Just Do it! 
88. Exercising our Judgement 
89. Schoolbook Examples 
90. A Prime Example of a Mathematical Model 
91. Ratios 
92. Visualizing Ratio Problems 
93. Summary 

 

Chapter 12: Arithmetic Tricks and Hacks     Page 235 
 

94. Mind Reading Tricks 
95. Arithmetic Hacks 
96. An Antiquated Hack: Rationalizing the Denominator 
97. Expected Schoolbook work on Square Roots 
98. The Difference of Two Squares 
99. Expected Schoolbook Work: Factoring 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

 

Further Chapters Coming 

 

Appendix: A Summary of All the Rules of Arithmetic 

Index of Thorny Problems 

Index of Topics  
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Introduction: Why Part 2? Where’s Part 1?  
 

I remember as a youngster back in Australia in the late 70s eagerly awaiting the release of a new movie 

that I heard was creating a sensation in America. It was called Star Wars. Us Aussies had to wait several 

months before it was released on our continent, and that waiting was torture for this eleven-year-old 

lad.  

 

I was, of course, immediately enthralled by the production when I finally got to see it. But I was also 

perplexed. It was called “STAR WARS: EPISODE IV.” Where were episodes I, II, and III? What had I 

missed?  

 

Well, it turns out much of the world was perplexed too by this in the opening titles and nothing was 

missed.  

 

I dare not equate these math notes with the magic George Lucas’s work (nor try to explain why I think 

Lucas decided to first share his epic galactic saga to the world midway through its story), but I will settle 

one similar issue with regard to these notes: 

 

Where are chapters 1 through 8 that supposedly comprise Part 1 of this math story? 

 

The answer is that they are here, in this link, freely available to one and all, including you. Because I put 

them on a website, you may have missed them.  

 

These first eight chapters are a gift to the world as part of a program I co-found called the Global Math 

Project whose goal is to prove that mathematics—school mathematics even—truly can serve as a portal 

to intense human connection, meaning, and joy. (This video outlines the history of the project and the 

impact it has had.)  

 

Part 1 of this series covers the story of grade-school arithmetic. You likely already know the mechanics 

of what is covered there.   

 

For instance, you no doubt know about the counting numbers 0, 1, 2, 3, … and how to do arithmetic 

with them: add them, subtract them, multiply them, and divide them. You likely know the “opposite” 

numbers −1, −2, −3, …, that then bring us to the world of integers. And you have probably been 

trained to do arithmetic with these numbers too. (To recognize that (−4) × 5 = −20  and 

(−2) × (−3) = +6, for instance.)  

 

And you have no doubt gone further and worked with fractions and decimals as well. 

 

  

 

https://gdaymath.com/lessons/gmp/9-1-chapter-content/
https://youtu.be/Pmqw2e7A64Y
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But notice that I chose to say “mechanics.” Doing math versus truly owning and deeply understanding 

the math you are doing are very different things.  

 

I remember back in grade 5 of my schooling receiving gold star after gold star on my long division 

worksheets. I was even called the star of the class for apparently truly “getting” long division. But I didn’t 

get it. I had just memorized the algorithm (quite well, apparently) and was performing simply to please 

my teacher. I was fully cognizant of the fact that I didn’t understand what I was doing one whit.  

 

Part 1 invites us to reexamine all we think we know about school arithmetic and see it in new, clear, and 

sensical light.  

 

However, starting on this second volume without working though Part 1 will likely be fine. Just be willing 

to refer to sections of Part 1 every now and then as you go along. To get a sense of what I mean by this, 

have a look at the six Musings at the end of this introduction. They are not prerequisites, but they do 

illustrate the depth of understanding developed in that first volume.  

 

Each of our educational journeys has bits and bobs that are hazy or are outright missing. That’s okay! Try 

this volume and see how it goes. I’ll do my best to direct you to relevant sections of Part 1 as we move 

along to help out.  

 

Be kind to yourself.  

 

Despite what you might have been trained to believe from school math, there is actually no rush to 

make sense of mathematics. Don’t hurry! Just let a profound beautiful sense of mathematics unfold over 

whatever amount of time it takes.  

 

So, take your time. Linger. Enjoy! 

 

Mathematics is a gift for you to truly savor.  
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MUSINGS 
Here are some thorny issues covered in detail in Part 1. How do personally feel about attending to 
these questions?   
 
Musing 1: People say you can’t divide by zero. But why?  
Can you personally explain what goes wrong mathematically if you try to divide by zero? 
[See Sections 17 and 38.] 
 
Musing 2: Why, exactly, is negative times negative positive? Have you a convincing explanation? 
[See Section 25.] 
 
Musing 3: Every few months the following problem makes the rounds on the internet. 
 

What is the value of 𝟖 ÷ 𝟐(𝟐 + 𝟐)? 

 
a) Some people say this expression has value 1. Do you see why they might say that? 
Other people say that it has value 16. Do you see how such folk must be thinking?  
b) Can you insert parentheses into the expression to ensure everyone evaluates it as 1? 
c) Can you insert parentheses into the expression a different way to make sure everyone evaluates it 
as 16? 

[See Sections 8 and 9.] 
 

Musing 4: Are you comfortable evaluating 17 × 18 each of these two ways? 
(The second picture looks like it is a rectangle with negative side lengths and negative areas. Is that 
allowed?) 

 
[See Sections 11 and 24.] 
 
Musing 5: Does “3𝑛 + 1” make sense to you as a shorthand way to write “triple an unspecified 
number and add one to the result”?  
 
Musing 6: Here’s a piece of math that looks scary:  6𝑥2 − 3𝑎𝑥 = 3𝑥(2𝑥 − 𝑎). 
After a moment and a deep breath, can you start to make some sense of it?  
Could you perhaps draw a picture to demonstrate what it is saying? 
[See Section 13 and 24.] 
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Chapter 9 
Solving, Graphing, Seeing  
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72. Math is a Language 
 

People say that “mathematics is a language.” I personally am not sure I know what that means. 

 

Presumably this remark is a curt summary of a statement made by Italian physicist Galileo Galilei (1564-

1642) in his work Opere II Saggiatore:  

 

[The universe] cannot be read until we have learnt the language and become familiar with the 

characters in which it is written. It is written in mathematical language, and the letters are 

triangles, circles and other geometrical figures, without which means it is humanly impossible to 

comprehend a single word. 

 

Galileo is making a deep philosophical statement that no doubt has been probed and debated by folk 

cleverer than me.  

 

Rather than comment on Galileo’s musing myself, I will offer instead a non-erudite interpretation of the 

curt summary statement.  

 

Mathematics is a language, in a very literal way.  

 

Since we are currently communicating in English, the language of math is … English!  

(And if I was writing in Hindi or in Korean, then the language of mathematics would be Hindi or Korean.) 

 

The fact is that every mathematical statement is a sentence. 

For example, the statement 

5 = 2 + 3 

has a subject (the quantity “5”), a verb (“equals”), and an object (the quantity “2 + 3”).  

 

As such, the sentence when written as a stand-alone statement should come with proper English 

punctuation: it needs a period at its end. 

5 = 2 + 3. 

Look up any published mathematics paper and you will see it littered with words and symbols and 

formulas replete with all the Englich punctuation to go with them—periods, commas, semi-colons, you 

name it. You’ll see that punctuation even within and throughout the symbols and lines of formulas. 

(There are occasional instances where the mathematics community has agreed to let go of some 

punctation for the sake of visual clarity, but it is implied that it is there.)  
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One can literally read a math paper out loud as though it were an essay from English class.   

Let’s run with this idea.   

 

Consider, for instance, the statement: 

 7 > 4 + 9. 

The subject is the number 7, the verb is “is greater than,” (well, that’s a bit more than just a verb in this 

case), and the object is the quantity 4 + 9. (We talked about the greater than symbol in section 50.)  

 

A sentence with equals as its verb is called an equation.  

A sentence that compares quantities or states that two quantities are not equal is called an 

inequality. 

 

Our first sentence, 5 = 2 + 3,  happens to be a true sentence about numbers and our second sentence, 

7 > 4 + 9, a false one. (Seven is not larger than thirteen!)  

 

And although we know in life that sentences made need not be true, mathematics tends to focus on 

truth and wants to present sentences that are true statements about numbers. 

 

But there is another issue: sentences can also be ambiguous. They may need further context or 

information before being deemed true or false.  

 

For instance, the sentence  

Harold is over six feet tall 

cannot be determined as true or false until we are told which particular Harold of the world the speaker 

of this sentence is referring to.  

 

And any sentence in math class that uses a name for a number without specifically stating what that 

number is in the author’s mind cannot be determined as true or false either. For example,  

 

𝑁 +  3 =  10 

 

is a sentence about a number being called “𝑁.”  The sentence is currently neither true nor false. Of 

course, if we are later told that 𝑁 represents the number 7, then we can deem it a true sentence. If, 

instead, we are later told that 𝑁 represents 13, then we can say we have a false sentence.  
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The sentence 

𝑥 = 2 
 

is currently neither true nor false. But we do realize that if 𝑥 represents the number 2, then it would be 

a true sentence.  

 

 

 

Practice 72.1:  The symbol for “does not equal” is ≠. (Have you seen this before?) 

 

a) Give a value for a number being called 𝑝 that makes the sentence  

 

𝑝 ≠ 2 

a true sentence.  

 

b) Now give value for 𝑝 that would make it a false sentence.    
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MUSINGS 
 
Musing 72.2 (We talk about numbers being squared in Section 11.) 
 
Here’s a sentence about an unspecified number being called 𝑛.  
 

𝑛2 = 25 
 
Without knowing anything about 𝑛, the sentence is currently neither true nor false. 
 
a) Let me tell you that the unspecified number 𝑛 is actually 7 in my mind. Knowing that, is the given 
sentence true or false?  
 
b) Actually, that’s not the case: the number 𝑛 is really 5. Given that, is the sentence true or false? 
 
c) There are two numbers 𝑛 could be that would make the sentence true. I believe you’ve just found 
one of those values. What’s the other one? 
 
 
Musing 72.3 Here is another math sentence about a number being called 𝑟. Knowing nothing about 𝑟, 
the sentence is currently neither true nor false. 
 

𝑟 + 3 > 100 
 
Describe all the possible numbers 𝑟 could represent that would make this a true sentence.  
 
 
 
Musing 72.4 Here’s a math sentence about two numbers being called 𝑎 and 𝑏. 
  

𝑎𝑏 = 0 
 
Give some examples of numbers that 𝑎 and 𝑏 could represent to make this a true sentence. 
 
[The given sentence could also be written 𝑎 × 𝑏 = 0 using the multiplication symbol. 
See Section 9 for the various ways people indicate two numbers being multiplied together.] 
 
Musing 72.5 Have you noticed spots in my writing where I have not put in the proper punctuation 
around a math sentence? There is the convention in math writing not to put in punctuation if a math 
sentence is being “displayed,” that is written on its own line, usually centered in the line.  
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73. Collecting Math Data 
 

When presented with a math sentence that includes the names of numbers not explicitly specified, one 

feels compelled to think of values for those undeclared numbers that make the sentence true. 

 

For example, in seeing the sentence  

𝑁 + 3 = 10 

with 𝑁 the name of some unspecified value, we can’t help but think: “𝑁 should be 7!” 

 

Practice 73.1 Here is a sentence about an unspecified number 𝑀.  

 

(𝑀 − 2) × (𝑀 − 8) × (𝑀 − 100) × (𝑀 − 42
1

2
) = 0 

  

Think of some values for 𝑀 that would make the sentence true.  

 

People call a symbol, letter, or name that represents a number a variable. It’s a scary-sounding word. 

But it comes from the idea that the value the symbol represents could vary if the author of the sentence 

changes their mind about the number they are actually thinking of. (Or, maybe the math sentence 

comes from some physical experiment the author is conducting and each run of the experiment 

produces slightly different values for the symbols representing numbers.)  

 

Those just reading a math sentence without any context might use the word unknown instead for the 

symbol representing an unspecified number. 

 

And if a math sentence contains unknowns, it feels compelling to think of values for the unknowns that 

make the sentence true. 

 

Collecting Data from Math Sentences 

 

It is natural to collect from a math sentences the values for the unknown(s) in the sentence that bring 

truth.  

 

For example, for the sentence  

𝑁 + 3 = 10 

 

there is just one data value to collect: Only the value 7 for 𝑁 makes the sentence true. 
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There is a lot of data we can collect from this equation: 

 

𝑎 × 𝑏 = 12 

 

For example, we could have 

𝑎 is 3 and 𝑏 is 4  𝑎 is 4 and 𝑏 is 3  𝑎 is 2 and 𝑏 is 6 

𝑎 is 12 and 𝑏 is 1 𝑎 is 
1

2
 and 𝑏 is 24  (We don’t have to stick with whole numbers!)  

 

People usually organize the data they collect in tables.  

 

 
 

This data table is certainly incomplete: there are an infinitude of values to be had that involve fractions 

and decimals making the statement 𝑎𝑏 = 12 true. And there are also negative data values we can add 

to the table such as 𝑎 is −3 and 𝑏 is −4. 

 

Example: Collect all relevant data for the equation 𝑥 = 2. 

 

Answer: There is only one data value to collect. We need 𝑥 to be the number 2 for this to be a 

true sentence. 

 

Example: Describe all relevant data for the inequality 𝑥 ≠ 2. 

 

Answer: There is an infinite amount of data to collect for this sentence: having 𝑥 be any number 

but 2 will make the sentence true! 
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Practice 73.2 Back to this sentence about the unknown 𝑀.  

 

(𝑀 − 2) × (𝑀 − 8) × (𝑀 − 100) × (𝑀 − 42
1

2
) = 0 

  

a) Do you have four data values for this sentence?  

b) Why isn’t 98 one of your data values? 

c) Why isn’t −2 one of your data values? 

d) Convince me that your four data values are the only data values that make this sentence true. 

 

 

Practice 73.3: Here is a compound sentence:  

3 < 𝑞 < 7 

 

It reads “the value 3 is smaller than the value 𝑞, which, itself, happens to be smaller than the 

value 7.” (So many words are condensed into those math symbols!)  

  

a) Give six data values that make the sentence true.  

b) How many data values are there that make the sentence true?  
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Here is another math sentence. 

 

𝑤2 = 𝑏 

 

The subject is an unspecified number 𝑤 that is squared, the verb is “equals,” and the object of the 

sentence is an unspecified number 𝑏. 

Again, it is natural to collect values for 𝑤 and 𝑏 that make the sentence true. Using trial and error to do 

so is fine. (But if you have some judicious reasoning to use, go for it!)  

Here’s my start to a data table. 

 

We have that 𝑤 is 3 and 𝑏 is 9 is a line in the table because 32 = 9 is a true statement.  

I didn’t put 𝑤 is 16 and 𝑏 is 4 in the table because 162 = 4 is a false statement.  

 

Practice 73.4: Start a data table for the inequality  

𝑠 ∙ 𝑡 < 0 

Have at least six lines within your table. 
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MUSINGS 
 
Musing 73.5 Which of these math sentences about two unspecified numbers 𝑎 and 𝑏 have an 
infinitude of data values that make the sentence true? 

 
i) 𝑎 + 𝑏 = 0             ii) 𝑎 − 𝑏 = 0 
 
iii) 𝑎2 + 𝑏2 = 0       iv) 𝑎2 − 𝑏2 = 0 

 
Musing 73.6 Write down a math sentence about an unspecified number 𝑥 that has no data values 
that make the sentence true. 
 
Musing 73.7 Consider the math sentence  

𝑏

𝑏
= 1 

 
Describe all the data values that make this sentence meaningful and true. 
 

 

MECHANICS PRACTICE 
 
Practice 73.8 Give all the data values for this math sentence: 
 

36 = 𝑤2 
 
Practice 73.9 Draw a data table at least six lines long for this math sentence: 
  

𝑎 × 𝑏 = 1 
 
Practice 73.10 Find at least one data value for the inequality  
 

2𝑥 + 3𝑦 ≠ 5 
 

Practice 73.11 Find at least one data value for the equality  
 

2𝑥 + 3𝑦 = 5 
 

Practice 73.12 Find all the data values for the math sentence 
 

−𝑥 = −7 
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74. Visualizing Data: Graphs 
 

Here’s a story that is not true. 

One time, some students and I conducted an experiment.  

 

We were wondering if eating carrots has any effect on sleeping patterns. So, we decided to each eat 

some carrots before going to bed one night and note how many hours of sleep we each got for that 

night. 

 

Here's the (fake) data we collected.  

 

You can see that one student forgot to conduct the experiment and then could not sleep a wink out of 

guilt. 

 

 Question: Are there other data values that stand out to you? 

 

It’s hard to see—literally see—if this data is indicating anything of note. Is there a connection between 

carrot-eating and sleep? 

 

Can we make this data visual? 
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In our early grades, we represented numbers visually on a number line. It has become the convention to 

draw this line horizontally, with the positive numbers heading off to the right, negative numbers off to 

the left. We can put dots on the line to highlight certain numbers.  

 

So, we could represent the various counts of carrots eaten with dots on one number line, and the counts 

of hours slept with dots on a second number line. That’s one way to display our data.  

 

But the two number lines should be linked in some way since the data is linked: 6 carrots eaten matches 

9 hours of sleep, and so forth.  

 

Hmm. 

 

It took mathematicians a very long time to figure out a way to put two number lines together in a way 

that would help visualize linked data. In fact, the number line itself wasn’t “invented,” or seen as useful 

at least, until the mid-1600s when English mathematician John Wallis suggested using it as way to 

visualize basic arithmetic. French mathematician René Descartes at that time thought to put dots above 

and below a number line to start visualizing data from physical and geometric problems.  

 

But it wasn’t until a century later in the 1700s that scholars started drawing two numbers explicitly 

together. They kept one horizontal but made the second line vertical (with positive numbers going 

upwards). And they had the two lines cross at each of their zeros.  
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So, let’s do this too.  

But now there’s a question: Which number line should we use for counts of carrots, the horizontal one 

or the vertical one? And which number line should we use then for the counts of hours of sleep? 

 

Mathematics won’t care which one we choose for which, but scientists have come up with a convention: 

In an experiment, you are usually in control of one quantity and are looking to see what the 

response shall be to various control values.   

 

Convention: Use the horizontal number line for the control data and the vertical number line for 

the response data. 

 

In our experiment, students were in control of the number of carrots they ate. So, counts of carrots are 

our “control data” and we’ll consequently use the horizontal number line to represent that data. The 

number of hours of sleep students got as a result is our “response data” and we’ll use the vertical 

number line for that data. 

 

Let’s label our number lines 𝐶 and 𝑆, for “carrots” and “sleep” to show this. 
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Actually, since our data never gives us negative number results, let’s focus on just the positive numbers 

for each of our number lines. 
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Here’s how folk thought to make linked data visual using these two lines some 300 years ago: 

The first line of the data table has 𝐶 as 6 and 𝑆 as 9 (one student ate six carrots and got nine 

hours of sleep).  

To show this piece of data, look for the number 6 on the carrot number line. Then move 9 

places vertically up from it and draw a dot at that point. (And notice that you can use the 

vertical number line for 𝑆 to help identify that height of 9.) 

 

 
 

 

Then do the same for the remaining piece of data.  

 

Plotting the data piece 𝐶 is 0 and 𝑆 is 0 is interesting: you have to go “up” a height of zero from the 

number 0 on the carrot number line.  
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Here’s the result of making the data table visual.  

 

 
 

 

There does seem to be a trend: the more carrots you eat, the more hours of sleep you get!  

The data is showing us that there is something worth investigating about the effect of evening carrot 

eating for sleep effects (assuming you believe this nonsense story about my students and me eating 

carrots).  

 

 

 

 

Practice 74.1: A student says we omitted her data point. She marked it on the picture with an X.   

How many carrots did she eat and how many hours of sleep did she get? 
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We have just made a graph of our data. Some people might also call this a scatter plot. 

 

Each piece of data is represented as a point, and you may have heard people describe a piece of data as 

a data point.  

 

We had two number lines in our graph and data appears as points in a two-dimensional page.  
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Some More Jargon and Notation 

 

Each number line in a graph is usually called an axis.  

 

And rather label points as “𝐶 is 6, 𝑆 is 9,” which is cumbersome, people will write (6, 9) with the first 

number mentioned in the set of parentheses the value of the control variable, the second the value of 

the response variable. We call (6, 9) the coordinates of that particular data point.  

 

It is unfortunate that mathematicians have settled on using parentheses in this context as they are 

usually used to represent “groupings” and order of operations as per Section 9. (But maybe folk were 

thinking that this is appropriate as data values are being grouped together?)  

 

 

Practice 74.2: Which of the following points are not data points in our graph?  

(3, 5)  (5, 3)   (5, 6)  (5, 8)  (0, 0)  (4, 5)  (6, 4)  (4, 8)        

  

 

The point where the two axes (number lines) cross has coordinates (0, 0).  

People call this point the origin. 
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Now to something that sounds like it comes from a high-school algebra textbook. 

 

Example: Graph the equation  

𝑎2 = 𝑏2 

 

Let’s take it slowly to unravel what exactly is being asked of us here.  

 

 

To start, we see we have a math sentence.  The subject of the sentence is 𝑎2, an unspecified number 

that is squared, the verb is equals, and the object 𝑏2, another unspecified number that is squared. 

 

And no doubt we will want to obtain data values, values for 𝑎 and 𝑏, that make this sentence true.  

 

The command of the example is to “graph.” The word is being used as a verb, not a noun, but the author 

of the question must surely mean: “make a graph.” 

 

Okay, So, we are to collect data and display it visually with a graph. 

 

Next: What sorts of numbers for 𝑎 and 𝑏 make the sentence 𝑎2 = 𝑏2 true?  

 

By trial and error, I got these examples. 

 

Check:  Do verify that each of these data points do indeed make the math sentence true.  
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Let’s start creating a graph. 

 

We’ll need one axis (number line) for the data representing 𝑎 and a second axis for the data 

representing 𝑏. Let’s label the axes “𝑎” and “𝑏.” 

 

But there’s a question: Which axis should be which?  

Should we label horizontal axis “𝑎” and the vertical one “𝑏”? Or the other way round? 

 

There is no information in the question to indicate if one of these variables is in “control” and the other 

is in “response.” So, we can choose to do whatever we wish. 

 

So, let’s label the horizontal axis “𝑎” and the vertical one “𝑏.” (Mathematics does not care.) 

  

 

 

Let’s now plot the data points.  

 

The first two data points (3,3) and (2,2) are manageable, but I want to pause on the third one. 
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Plotting (−2, −2) requires finding −2 on the number line for 𝑎—not a problem—and then “going up a 

height of −2” from it. That sounds a bit strange.  

 

But a negative height must be the opposite of a positive height and we go downwards rather than 

upwards. A point −2 units high, must be 2 units below. 

 

We can plot (−2, −2). 

 

Practice 74.3: Try plotting the remaining six data points before turning the page.  

Here’s what I got. Did you get the same picture? 
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(One should really conduct this work on graph paper. I am currently eye-balling the proper locations of 

the data points!) 

 

 

 

 

 

 

Practice 74.4: Collect at least ten more data points that make the equation 𝑎2 = 𝑏2 a true 

sentence and plot those points as well on the picture above. Be sure to choose some data points 

with fractional or decimal values.   
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As I plot more and more data points, a compelling picture seems to be falling into place. 

 

 

 

Actually, if we kept going and going and going with this, I can imagine a whole continuum of dots 

appearing to make a picture of big X for my graph. 
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And I can argue that this would be legitimate thing to conclude.  

 

For example, I chose the black dot at random on one part of the X and it looks like it has coordinates 

(4.1, 4.1). And this is a data value that makes 𝑎2 = 𝑏2 a true statement.  

 

In fact, whenever we set 𝑎 and 𝑏 to have the same value, the statement 𝑎2 = 𝑏2 will be true, and it 

looks like every point on the north-east diagonal line provides values for 𝑎 and 𝑏 that are the same. 

 

I also chose the yellow dot on the south-east diagonal line at random, it is looks like it has coordinates 

(1.3, −1.3) and this too is a data value that makes 𝑎2 = 𝑏2 a true statement.   

 

In fact, whenever we set 𝑎 and 𝑏 to have the same value but make one of the values negative and the 

other positive, the statement 𝑎2 = 𝑏2 will be true. Every point on the south-east diagonal line gives 
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such data values.  

 

The graph of the equation 𝑎2 = 𝑏2 really is a pair of lines making an X shape: every point on one of the 

lines corresponds to a data point that makes the sentence 𝑎2 = 𝑏2 true. And every data point that 

makes the sentence true lies on one of these lines.  

 

The origin happens to lie on both lines. 

 

Here's a picture of the graph properly drawn on graph paper.  

 

 
 

 

Practice 74.5: What would the graph of the equation look like if we had instead labeled the 

horizontal number line as “𝑏” and vertical one as “𝑎”? 
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Practice 74.6: Consider this equation:  

𝑎 = 𝑏 + 6 

 

Find some data values for this equation, plot the data points you find, and create the graph of 

this equation on the same picture as the one above. 

 

What is special about the data point that are on both graphs simultaneously?  

 

 

Practice 74.7:  In each of the following, label the horizontal axis “𝑥” and the vertical axis “𝑦.” 

 

a) Sketch a graph of the equality 𝑥𝑦 = 0. 

b) Sketch a graph of the inequality 𝑥𝑦 ≠ 0. 

c) Sketch a graph of the inequality 𝑥𝑦 > 0. 
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One-Dimensional Graphs 

 

Consider this math sentence from the previous section.  

 

(𝑀 − 2)(𝑀 − 8)(𝑀 − 100)(𝑀 − 42
1

2
) = 0 

There are only four data values that make the sentence true: 𝑀 must be 2, 8, 100, or 42
1

2
. 

 

To display this data visually we need only one number line. We can label it “𝑀”and show these four 

values as points on it.  

 

This picture is a graph of the equation.  

 

Practice 74.8 Graph the equation 𝑥 = 2. 

 

A graph of the inequality  

𝑥 ≠ 2 

would also be one dimensional and would show a number line labeled “𝑥” that has every point but 2 

shaded on it. This is tricky to draw. 

 

Mathematicians have settled on the following drawing conventions:  

 

• To indicate that a particular point is not part of the graph, draw an open dot at that point. 

 

• If it helps to clarify that a particular point is part of the graph, use a solid dot at that point. 

 

• To indicate that a region of points is part of the graph, shade the region. (The idea is to have it 

look like an infinitude of solid dots drawn throughout.) 
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Here’s the graph of 𝑥 ≠ 2. 

 

 

 

 

 

Practice 75.9 Graph the inequality 2 < 𝑥. 

 

 

The symbol ≤  means “less than, or possibly equal to.” 

 

Example:  Graph the statement  −4 < 𝑝 ≤ 3. 

Answer:  

 

 

 

Here’s a tricky example.  

 

 Example:  Graph the inequality 𝑤2 ≥ 4. 

Answer: What sorts of values for 𝑤 make this statement true? Certainly 𝑤 could be 3 or 10 or 

10.067, for instance. It could also be 2. 

 

Actually, it could also be −2 or −3 or −10 or −10.067. (Do you see why?) 

 

We have the following graph (with filled-in dots). 

 

 
 

Practice 74.10 Graph 𝑟2 < 1. 
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MUSINGS 
 
Musing 74.11 For each of the following, give a mathematics statement whose graph could be as 
shown. 
 

 
 
Musing 74.12  Let’s look at some one-dimensional graphs. 
a) Graph the equation a= 𝑎. 
b) Graph the inequality a≠ 𝑎. 

c) Graph the equation 
𝑎

𝑎
= 1. 

 
Musing 74.13 Sketch a graph of  

𝑥  +    0 × 𝑦  =   3 
 
(Most people would just write this sentence as “𝑥 = 3,” but I want to point out that it is really a 
statement about two unknowns 𝑥 and 𝑦 to thus obtain a two-dimensional graph.) 
 
Musing 74.14 Challenge 
Give TWO math statements whose graph would match this picture.  
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MECHANICS PRACTICE 
 
Practice 74.15 Sketch (one-dimensional) graphs for each of these statements. 
 
a) 𝑥(𝑥 − 3)(𝑥 + 4) = 0 
b) 5 > 𝑝 ≥ 3 
c) 𝑤2 = 0 
 

Practice 74.16 Give a math statement whose graph would match each of these pictures. 
 
 

 
 

 

 
Practice 74.17 Graph  

2𝑥 + 𝑦 = 9 
 
with the horizontal axis labeled “𝑥.” 
 
Start by collecting data points in a table and plotting those. (Is there a systematic way to do this? 
Perhaps ask “If 𝑥 is 1, then 𝑦 would have to be …?” for instance. Don’t forget fractional values too.)   
 
Then imagine collecting more and more and more data points.  
Would you have a continuum of data points in the graph? 
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75. What it means to Solve an Equation or Inequality 
 

One hears all the time in algebra class, “Please solve …” (but often without the “Please”!) 

  

Simply put, to solve a sentence about numbers is to identify all the data points that make the sentence 

true. We’ve been doing this already. 

 

For example, the equation  

𝑤 + 4 = 10 

has only one value for 𝑤 that would make this a true sentence, namely 6. We say that this equation has 

one only solution, namely that 𝑤 must be 6. 

 

The inequality  

2 < 𝑥 

has a whole range of solutions: all values larger than 2.  

 

The equation  

𝑐2 = 16 

has two solutions, namely, 𝑐 can be 4 or −4 to make this a true sentence.  

 

 

We can express the solutions to a sentence about numbers in any way that successfully communicates 

to the reader what they are. For example, the inequality  

𝑎𝑏 > 0 

 

has solutions: 

Any two values for 𝑎 and 𝑏 that are either both positive or both negative.  

There! We have just solved the inequality 𝑎𝑏 > 0. 

 

 

Practice 75.1: Solve the equation 𝑥 = 𝑦.  
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A graph is a visual representation of all the solutions to a sentence about numbers. So, one could 

communicate the solutions of an equation or an inequality simply by presenting a graph of the equation 

or inequality.  

This graph answers Practice 75.1. It’s a picture of all the data points that have 𝑥 and 𝑦 the same value. 
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Here’s an example that confuses many people, including math teachers. 

 

Example: Solve x = 3. 

Answer: There is only one possible value for 𝑥 that makes this a true sentence, namely, 𝑥 must 

represent the number 3. 

 

This is confusing to math folk because they have forgotten that a statement like 𝑥 = 3 is a sentence that 

is technically neither true nor false as it stands. It is only when someone tells you the value for 𝑥 they 

have in mind do we know whether or not the sentence is true. 

 

And why have people forgotten this? 

 

Because people do something that is a tad lazy and use an equal sign to express the solutions to a 

number sentence.   

 

As an example of that I mean, consider the very first equation I presented in this section 

 

𝑤 + 4 = 10 

People might write this response to this 

 

If 𝑤 + 4 = 10, then 𝑤 = 6 

 

and stop there. 

 

Actually, people will usually write even less 

 

𝑤 + 4 = 10 

𝑤 = 6 

 

and skip all the in-between words.  

 

And what they mean in these curt writings is the following:  

 

The solutions to 𝑤 + 4 = 10  are the same as the solutions to 𝑤 = 6, and everyone knows what 

the solutions to this second sentence are. 
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As another example, people might write 

If 𝑐2 = 16, then 𝑐 = 4 or −4 

or just 

𝑐2 = 16 

𝑐 = 4  or − 4 

 

These both stands for: 

The solutions to  𝑐2 = 16, are the same as the solutions to the sentence “ 𝑐 = 4 or −4,” and it is 

clear what the solutions to this second sentence are. 

 

People have gotten into the habit of not bothering to write “and the solutions to this second sentence 

are clear,” assuming it is understood. As a result, many have forgotten that sentences like “𝑤 = 6” and 

“𝑐 = 4  or − 4” are sentences that have solutions that need to be described too. 

 

But you can see a process here. 

 

The art of solving a sentence about numbers is to  

 

Take the given math sentence and turn into a new sentence which you are confident has exactly 

the same solutions as the original sentence, and whose solutions are blatantly clear and obvious 

to anyone who reads the new sentence. 

 

And how do we do conduct such a transformation? 

 

The process we use to do so was first developed by the Persian scholar al-Khwarizmi (ca. 780 – ca. 850) 

in his book “The Science of Restoring and Balancing.” He described methods for converting one 

sentence about numbers into a new sentence without changing the solutions it has. He called his 

method al-jabr from the Arabic term for a “reunion of broken parts.” From that term came the word 

algebra we use today.  

 

(In addition to this, the word algorithm, which we use for any set of instructions for carrying out a task, 

is derived from his name!)  
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MECHANICS PRACTICE 
 
Practice 75.2 Here’s a (curt) piece of written mathematics. 
 

(𝑥 − 2)(𝑥 − 3)(𝑥 + 5) = 0 
 

𝑥 = 2 , 3 , or − 5 
 
Write out in full what is being said (and understood to be said) here. 
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76. The Art of Balancing: What We Say is True about Equality  
 

al-Khwarizmi evoked the idea of two quantities in a math sentence being in “balance” if the two 

quantities are deemed equal.  

 

This provides lovely imagery that has been adopted by many math curriculums: two quantities are 

shown as “equal” if they balance on a simple two-pan balance.  

 

For example, here’s a picture of a bag of apples balancing perfectly with three apples. What can we 

conclude?  

 

[Let’s assume henceforth that all apples we discuss are of identical weight, that bags only contain 

apples, and that the weight of the material of any bag is immaterial compared to the weight of apples.]  

 

 

 

 

The picture represents the equation  

 

𝐵𝐴𝐺 = 3 

 

and the solution must be that “BAG” represents the number 3. That is, there must be three apples in the 

bag.   
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Let’s use the imagery of “balance” to identify what we believe is true about equality.  

And let’s do that by playing with this more complicated balance picture. 

 

(Assume all bags in this picture contain the same count of apples.) 

 

  
 

You can no doubt see that each bag must contain four apples for this picture to be true. 

But that solution is less easy to see if we just look at the math sentence that describes the picture.   

 

2 𝐵𝐴𝐺 + 1 = 𝐵𝐴𝐺 + 5 

 

 

Let’s make seeing that easy via al-Khwarizmi’s method of al-jabr.  
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Our everyday experience suggests removing one apple from each side of the scale won’t affect the 

balance of the scales and thus won’t affect the truth of the situation. The number of apples in each bag 

that make our original picture true is precisely the same as the number of apples in each bag to make 

this slightly less complicated picture true. 

 

In terms of math sentences, we’ve just converted the statement 

2 𝐵𝐴𝐺 + 1 = 𝐵𝐴𝐺 + 5 

to the statement  

2 𝐵𝐴𝐺 = 𝐵𝐴𝐺 + 4 

 

believing that we haven’t affected the truth of the statement and hence its solutions. 

 

Since all bags are identical, we can also take a bag off of each side of the scale and not affect the truth of 

the picture.  

 

 

This means we have just converted the statement 

2 𝐵𝐴𝐺 = 𝐵𝐴𝐺 + 4 

to 

𝐵𝐴𝐺 = 4 

without affecting the truth and the solutions.  
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From 

 

𝐵𝐴𝐺 = 4 

 

it is clear that 𝐵𝐴𝐺 represents the number 4. There are four apples in the bag. 

 

 

In summary: We turned the statement  

2 𝐵𝐴𝐺 + 1 = 𝐵𝐴𝐺 + 5 

 into much simpler statement  

𝐵𝐴𝐺 = 4 

without affecting the truth along the way. They are equivalent statements.  Any value for 𝐵𝐴𝐺 that 

makes the first statement true, makes the second statement true too, and vice versa.  

 

 
 

 

 

Jargon: Two math sentences about the same unknowns are equivalent if they have exactly the same 

solutions (that is, the same set of values that make each sentence true). 

 

Algebra is the art of turning one math sentence into an equivalent sentence whose solutions are more 

readily seen.  
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As we worked through this example, we employed a feature we like to believe is true of equality:  

 

Suppose 𝐴 = 𝐵 is a statement about equality of quantities. 
 
For any number 𝑘, the statements 
 

𝐴 = 𝐵 
and  

𝐴 + 𝑘 = 𝐵 + 𝑘 
are equivalent.  

 

 

(If 𝑘 is a negative number, then we’re really making a statement about subtraction here.) 

 

Adding an apple to each side of balance pan (𝑘 = 1) does not affect truth. 

Subtracting an apple to each side of a balance pan (𝑘 = −1) does not affect truth. 

Adding a bag to each side of a balance pan (𝑘 = 𝐵𝐴𝐺) does not affect truth.  

And so on. 

 

 Example: Solve  

4 + 3𝐵𝐴𝐺 = 4𝐵𝐴𝐺 + 1 

 

Answer: The left side of the math sentence is 4 + 3 × 𝐵𝐴𝐺 and the right side is 4 × 𝐵𝐴𝐺 + 1. 

We have this picture: 

 

Subtracting 1 from each side of the equation gives  

 

3 + 3𝐵𝐴𝐺 = 4𝐵𝐴𝐺 

Subtracting 3𝐵𝐴𝐺 from each side of the equation gives  

 

3 = 𝐵𝐴𝐺 

 

(Are you comfortable with “4𝐵𝐴𝐺 − 3𝐵𝐴𝐺” giving “𝐵𝐴𝐺"? See Sections 13 and 25.)  
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We have converted the sentence 4 + 3𝐵𝐴𝐺 = 4𝐵𝐴𝐺 + 1 into the equivalent sentence  

3 = 𝐵𝐴𝐺. 

 

It must be that 𝐵𝐴𝐺 represents the number 3. 

 

Here's the curt way to present this reasoning.  

 

4 + 3𝐵𝐴𝐺 = 4𝐵𝐴𝐺 + 1 

3 + 3𝐵𝐴𝐺 = 4𝐵𝐴𝐺 

3 = 𝐵𝐴𝐺 

thus 

 

𝐵𝐴𝐺 = 3 

 

Students are usually required to annotate their work 
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I need to point out two more things. 

 

1. In the previous solution, I converted the sentence 3 = 𝐵𝐴𝐺 into the sentence 𝐵𝐴𝐺 = 3 

without comment. This presumed another belief about equality.  

 

 
If 𝐴 = 𝐵 , then 𝐵 = 𝐴, and vice versa. 
 

 

Not a big deal, but I thought I should be explicit about this. 

 

 

 

2.  If a math expression, like 4 + 3𝐵𝐴𝐺, involves expressions sitting between + and – signs and 

some of these pieces are just numbers and others involve unknowns, then it has become the 

convention to write the pieces that involve unknowns first and the pieces that are just numbers 

second.  

 

Consequently, people prefer to 4 + 3𝐵𝐴𝐺 as  

 

3𝐵𝐴𝐺 + 4 

 

There is a seemingly contradictory convention that if a number and an unknown are multiplied 

together, then one should write the number first and the unknown second. (So, write 3𝐵𝐴𝐺 and 

not 𝐵𝐴𝐺3.)  

 

Got that? 

 

Mathematics doesn’t care about any of this. It is just societal style thing. 
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Practice 76.1: For each picture below, write a math sentence that matches the picture. 

 

Then perform the steps of algebra to convert the sentence to an equivalent one that makes it 

blatantly clear how many apples must be in each bag. (Giving a curt-style presentation is fine.) 

 

Imagine how the balance picture is changing as you perform each of your steps. 

 

                                 

 

        

 

(Anti-apples?) 
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Here’s a picture and its matching sentence. 

 

Let’s double the quantities on each side of the pan-balance scale. Commonsense tells us that this won’t 

change the truth of the picture.  

 

We could triple or quadruple the quantities on each side and still have no effect on the truth of matters.  

 

We can even multiply quantities on each side of the scale by fractions and preserve truth. For example, 

multiplying each side of “4𝐵𝐴𝐺 = 12” (the right picture) by 
1

2
 gives “2𝐵𝐴𝐺 = 6” (the left picture.) 

We have a second belief about sentences that are equations. 

 

Suppose 𝐴 = 𝐵 is a statement about equality of quantities. 
 
For any non-zero number 𝑘, the statements 
 

𝐴 = 𝐵 
and  

𝑘 ∙ 𝐴 = 𝑘 ∙ 𝐵 
are equivalent.  

 

 

(See chapters 4 and 5 to see that multiplying a quantity by a fraction of the form 
1

𝑛
 is the same as 

dividing that quantity by 𝑛. There really is no such thing as division. It’s just multiplication by a fraction.)  
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Practice 76.2: Why shouldn’t 𝑘 be zero in this belief?   

Could two statements of the form 𝐴 = 𝐵 and 0 ∙ 𝐴 = 0 ∙ 𝐵 have different solution sets? 

 

Actually, let me answer this practice question. 

 

Consider, for instance, the math sentence  

𝑥 = 7 

This sentence has just one solution: 𝑥 must be 7 for the sentence to be true. 

 

Now consider the sentence 

0 ∙ 𝑥 = 0 ∙ 7 

 

This sentence is true no matter what number x represents: multiplying any number by zero gives zero in 

all cases. 

The sentence 𝑥 = 7 has solution set: the single number 7. 

The sentence 0 ∙ 𝑥 = 0 ∙ 7 has solution set: the set of all numbers.   

 

Multiplying each side of math sentence by zero gives a sentence that is suddenly true for all values for 

the unknowns.  

 

Another issue: Do you believe in anti-apples? 

 

I snuck some in for practice problem 76.1, but I am not sure if you liked that.  

 

The solution to 76.1 c) requires each bag to contain two anti-apples. If each (proper) apple exerts a 

downward force due to gravity, each anti-apple does the opposite and wants to float upward by that 

same amount of force (so that an apple and anti-apple together have zero combined effect). 

 

But, of course, making such “factual” claims is pointing to the absurdity of trying to make mathematics 

apply, in full, to any one physical model. As we saw in Part 1, physical models can inspire mathematics, 

motivate mathematics, and provide intuition for some aspects of mathematics—but not all of it. Each 

model starts to become “absurd” when pushed beyond its natural parameters.  

Nonetheless, given that we do have negative numbers in our mathematical universe, it is natural to test 

our stated belief and decide if it should extend to negative numbers as well.  

 

For example, taking 𝑘 = −1, does it seem right that  𝐴 = 𝐵 and −𝐴 = −𝐵 are equivalent statements? 
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Practice 76.3   

a) What are the solutions to 𝑟 = 3? What are the solutions to −𝑟 = −3? 

b) What are the solutions to 𝑥 = 𝑦? What are the solutions to −𝑥 = −𝑦? 

 

The solution sets for each pair of equations in this problem simply must be the same. And here’s why. 

 

Example: Explain, in general, why 𝐴 = 𝐵 and −𝐴 = −𝐵 are equivalent statements. 

(Here 𝐴 and 𝐵 each represent expressions that involve numbers and unknowns.)  

 

Answer: Start with 𝐴 = 𝐵 and add the number −𝐴 to each side.  

 

𝐴 = 𝐵 

𝐴 +  −𝐴 = 𝐵 +  −𝐴 

This is 

0 = 𝐵 +  −𝐴 

Now add −𝐵 to each side. 

0 +  −𝐵 = 𝐵 +  −𝐴 +  −𝐵 

−𝐵 = −𝐴 

We can rewrite this as −𝐴 = −𝐵. 

 

So, believing that adding the same number to each side of an equation does not alter truth 

forces us to conclude that 𝐴 = 𝐵 and −𝐴 = −𝐵 are two equivalent equations.  

 

So, it does not matter whether or not you believe in and want to play with apples and anti-apples. 

Mathematics offers a way to move forward and find solutions to equations that involve negative 

quantities nonetheless.  
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Okay, let’s practice some al-jabr. 

 

Example: Solve  

5𝑏 + 2 = 2𝑏 + 14 

(I am getting tired of writing 𝐵𝐴𝐺. I am just writing b now.) 

 

Answer: Let’s add −2 to both sides of the equation. (That is, if I am picturing bags and apples on 

a balance scale, let’s remove two apples from each side.) 

 

5𝑏 + 2 = 2𝑏 + 14 

5𝑏 + 2 +  −2 = 2𝑏 + 14 +  −2 

5𝑏 = 2𝑏 + 12 

Let’s now add −2𝑏 to each side of the equation. (In my mind and removing two bags from each 

side of the balance scale.) 

5𝑏 +  −2𝑏 = 2𝑏 + 12 +  −2𝑏 

3𝑏 = 12 

Let’s now multiply each side of the equation by 
1

3
. (That is, let’s scale down each side of the 

balance scale by a factor of three.) 

 
1

3
× 3𝑏 =

1

3
× 12 

1

3
× 3 × 𝑏 =

1

3
× 3 × 4 

𝑏 = 4 

Thus, the equation 5𝑏 + 2 = 2𝑏 + 14 is equivalent to the equation 𝑏 = 4 . 

 

 

For truth, 𝑏 must be the number 4. 
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Curt, Wordless, Makes-Math-Seem-Inhuman-and-Scary Presentation:  

 

5𝑏 + 2 = 2𝑏 + 14 

5𝑏 + 2 − 2 = 2𝑏 + 14 − 2 

5𝑏 = 2𝑏 + 12 

5𝑏 − 2𝑏 = 2𝑏 + 12 − 2𝑏 

3𝑏 = 12 

1

3
× 3𝑏 =

1

3
× 12 

𝑏 = 4 

 

Remember that technically the final line here is not a solution – it’s just another equation with the same 

solution set as the original equation. One should write a final sentence along the lines “And so 𝑏 having 

the value 4 is the solution to the original equation,” but the practice is to omit such a final sentence and 

assume it is understood.  

 

 Example: Solve  

19𝑧 +  2 = 17𝑧 + 3 

(If I am still thinking about bags, I guess I am labeling them “𝑧” now.) 

 

Answer: You’ve probably sensed a general strategy: 

 

1. Add or subtract a number to each side of the equation to reduce the number of pieces in the 

math sentence that are numbers.  

2. Add or subtract some number of the unknown to each side of the equation to reduce the 

number of pieces in the math sentence that involve the unknown. 

 

3. Follow your nose from there. 

 

 Here goes: 

19𝑧 + 2 +  −2 = 17𝑧 + 3 +  −2 

 

19𝑧 = 17𝑧 + 1 

Now let’s work the pieces involving the unknown: 
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19𝑧 +  −17𝑧 = 17𝑧 + 1 +  −17𝑧 

2𝑧 = 1 

I can see that for this equation to be true, 𝑧 better be 
1

2
, and I can stop here having said that.  

 

But … if you are giving a curt, wordless presentation, then you might want to go a little further 

and add these two lines 

 
1

2
× 2𝑧 =

1

2
× 1 

𝑧 =
1

2
 

 

 

Example: Solve  

2 − 2𝑤 = 𝑤 + 6 

 

Answer: Here’s how my brain went with this:  

 

2 − 2𝑤 +  −2 = 𝑤 + 6 +  −2 

−2𝑤 = 𝑤 + 4 

−2𝑤 + 2𝑤 = 𝑤 + 4 + 2𝑤 

0 = 3𝑤 + 4 

0 +  −4 = 3𝑤 + 4 +  −4 

−4 = 3𝑤 
1

3
× (−4) =

1

3
× 3 × 𝑤 

−
4

3
= 𝑤 

so 

𝑤 = −
4

3
 

 

(See Chapters 5 and 6 to be clear on this fractions work.) 
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MUSINGS 
 
Musing 76.4 What do you believe about “not equal to”? 
 
What would you say is/are the solution(s) to the following inequality?  
 
   5𝑥 + 7 ≠ 𝑥 + 5   
 
As you work through this, imagine a pan balance with apples and bags of apples (each labeled “𝑥”) on 
each side but not in balance. As you add and remove apples and bags, does it feel right to say that the 
pan-balance is still out of kilter? Is this still the case if you scale the contents of each pan by a non-
zero number 𝑘? 
 
 

 

MECHANICS PRACTICE 
 
Practice 76.5 Solve each of the following equations. 
(Giving curt presentations of your work is fine.) 
 
a) 2𝑤 = −4 
 
b) 19𝑧 + 2 = 17𝑧 − 3 
 
c) 8𝑥 + 7 = 5𝑥 + 31 
 
d) 2𝑝 + 1 = 12𝑝 

 
e) 3𝑅 + 5 +  2𝑅 +  9 =  4𝑅 +  22 
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77. Another Algebraic Move 
 

In Part 1 we established ten basic rules of arithmetic—and their logical consequences. (See the 

Appendix.)  

 

We understand these rules to speak truth in, and of, themselves.  

 

For example, we believe we can change the order of the sum of two numbers without contradiction 

(Rule 1): 

 

𝑎 + 𝑏 = 𝑏 + 𝑎 is a true sentence no matter which two numbers 𝑎 and 𝑏 represent.  

 

and we believe the distributive rule (a.k.a. “chopping up rectangles,” Rule 8). For instance: 

 

𝑥(4 + 𝑎 + 𝑦) = 4𝑥 + 𝑎𝑥 + 𝑥𝑦  

is a true sentence no matter which numbers  𝑥, 𝑦 and 𝑎 represent. 

 

 

It seems right to believe that applying a fundamental rule of arithmetic to any part of a math sentence 

does not change the truth, and hence the solutions, of that sentence.  

 

For example, the sentences  

3 + 2𝑤 + 5 = 𝑤 − 7 

and 

2𝑤 + 8 = 𝑤 − 7 

are equivalent math sentences. 

 

Why? Because Rule 3 shows that we can add a string of addition in any order we like, so 3 + 2𝑤 + 8 can 

be deemed no different than 2𝑤 + 3 + 5, which in turn, is no different than 2𝑤 + 8. 
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Example: Kindly solve  

3𝑑 + 2 − 𝑑 = 4(𝑑 − 1) 

 

Answer: Let’s try applying some basic rules of arithmetic first to portions of this sentence.  

 

For starters, the expression 3𝑑 + 2 − 𝑑 is no different than 𝑑 + 𝑑 + 𝑑 + 2 +  −𝑑, which is just 

2𝑑 + 2. 

 

Also, 4(𝑑 − 1) is the same as 4(𝑑 +  −1), which is 4𝑑 − 4. 

 

So, our given math sentence is equivalent to the sentence 

  

2𝑑 + 2 = 4𝑑 − 4 

  

This looks like the type of example we solved in the last section.  

Adding 4 to each side of the equal sign gives the equivalent sentence  

 

2𝑑 + 6 = 4𝑑 

Adding −2𝑑 to each side of the equal sign then gives  

6 = 2𝑑 

 

Multiplying each side of the sentence by 
1

2
 gives 

3 = 𝑑 

The solution to the original math sentence is that 𝑑 must be the number 3. 

 

Curt Presentation: 

3𝑑 + 2 − 𝑑 = 4(𝑑 − 1)  

2𝑑 + 2 = 4𝑑 − 4    (arithmetic) 

2𝑑 + 2 +  4 = 4𝑑 − 4 +  4   

2𝑑 + 6 = 4𝑑    (arithmetic) 

2𝑑 + 6 +  −2𝑑 = 4𝑑 +  −2𝑑    

6 = 2𝑑   (arithmetic) 
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1

2
× 6 =

1

2
× 2𝑑  

3 = 𝑑  (arithmetic) 

So,  

𝑑 = 3  

 

 

Example: Please solve  

2(𝑥 − 3) + 2 = 2(𝑥 + 3) 

Answer:  

2(𝑥 − 3) + 2 = 2(𝑥 + 3)  

2𝑥 − 6 + 2 = 2𝑥 + 6 (arithmetic) 

2𝑥 − 4 = 2𝑥 + 6 (arithmetic) 

2𝑥 − 4 +  −2𝑥 = 2𝑥 + 6 +  −2𝑥  

−4 = 6 (arithmetic) 

 

The original math sentence is equivalent to a math sentence that is never true.  

There are no solutions to the given equation. That is, there are no values for 𝑥 that could make 

the sentence true. 

Some people will say “The solution set is empty.” 

 

Example: Please solve  

2(𝑥 − 3) + 12 = 2(𝑥 + 3) 

Answer:  

2(𝑥 − 3) + 12 = 2(𝑥 + 3)  

2𝑥 − 6 + 12 = 2𝑥 + 6 (arithmetic) 

2𝑥 + 6 = 2𝑥 + 6 (arithmetic) 

2𝑥 − 4 +  −2𝑥 = 2𝑥 + 6 +  −2𝑥  

6 = 6 (arithmetic) 

The original math sentence is equivalent to a math sentence that is always true, irrelevant to 

whatever value 𝑥 may be.   

Every number is a solution to the given equation. 

 

Some people will phrase this as “The solution set is the set of all numbers.”   
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MUSINGS 
 
Musing 77.1 Are you a logic purist? Did you realize that we have already been using the idea of this 
section in the previous section? (This means I should have presented this section of text first!)  
 
For example, in Section 76, I presented this example: 
 

Example: Solve  5𝑏 + 2 = 2𝑏 + 14 
Answer:  

5𝑏 + 2 = 2𝑏 + 14 
5𝑏 + 2 − 2 = 2𝑏 + 14 − 2 
5𝑏 = 2𝑏 + 12  (arithmetic) 
5𝑏 − 2𝑏 = 2𝑏 + 12 − 2𝑏 
3𝑏 = 12 (arithmetic) 
1

3
× 3𝑏 =

1

3
× 12 

𝑏 = 4 (arithmetic) 
 
Do you see that in going from the second line to the third we used the idea that 5𝑏 + 2 − 2 is no 
different than 5𝑏 (by the rules of arithmetic) and that 2𝑏 + 14 − 2 is no different than 2𝑏 + 12. 
And so on throughout this answer, and throughout the entire Section. 
 
Musing 77.2 Make up a complicated, scary-looking math sentence using the unknown 𝑦, whose 
solution is that 𝑦 must be 1. 
 

 

MECHANICS PRACTICE 
 
Practice 77.3 Kindly solve each of these equations.  
 
a) 6𝑚 + 5 − 3𝑚 + 4 + 7𝑚 = 4 + 3𝑚 + 2 + 8𝑚 + 2 
 
b) 2(𝑡 + 2) − 3𝑡 = 2(𝑡 + 1) 
 
c) 4(𝑤 − 5) − 5(𝑤 − 4) = 𝑤 − 6 
 
d) 𝑝(𝑝 + 5) = 5𝑝 + 36 
 
e) 3(𝑥 − 3) + 9 = 3𝑥 + 1 
 
f)  𝑧 = 𝑧 
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78. What We Say is True about Inequality 
 

Here is a picture of a balance-scale not in balance.  

𝐵𝐴𝐺 > 5 

 

For the picture to be true, the bag must contain more than five apples. That is, the solution set the 

inequality 𝐵𝐴𝐺 > 5 is the set of all numbers greater than 5.  

 

What happens if we add, say, three apples to each pan on each side of the balance scale? Common 

sense tells us that the scale will again be unbalanced and tilted in the same direction as before. 

 

  
 

It seems that the sentences 𝐵𝐴𝐺 > 5 and 𝐵𝐴𝐺 + 3 > 5 + 3 are equivalent statements. They have the 

same solutions, namely, that the unknown in each case must be a number greater than 5. 
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What if, instead, we doubled the quantities on each side of the balance scale?  

 

Common sense tells us that the balance pan will again be titled and in the same direction as before.  

 

It seems that the sentences 𝐵𝐴𝐺 > 5 and 2 × 𝐵𝐴𝐺 > 2 × 5 are equivalent statements too, each having 

the same solutions of requiring the unknown to represent a number larger than five.  

The same would be the case if we tripled, quadrupled, or centupled the quantities on each side of the 

balance scale: the scale will remain tipped in the same direction. We can even scale each quantity by a 

fractional amount, the tilt of the scale will not change.  

 

It is unclear, however, if we change the quantities on each side of the balance scale by a negative factor. 

This will require thinking through the meaning of “anti-apples” and “anti-bags.” and it is not clear if they 

are even meaningful! 

 

At the very least, we have: 

Suppose 𝐴 < 𝐵 is a statement about the inequality of two quantities. 
 
For any number 𝑘, the statements 
 

𝑨 < 𝑩 
and 

𝑨 + 𝒌 < 𝑩 + 𝒌 
are equivalent.  
 
If 𝑘 is positive, then we have a third equivalent statement. 
 

𝒌 ∙ 𝑨 < 𝒌 ∙ 𝑩 
 
This observation holds too for the inequalities ≤, >, and ≥. 
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Question: Does it feel right to you to say that 𝐴 ≥ 𝐵 and 𝐴 + 𝑘 ≥ 𝐵 + 𝑘 are equivalent 

statements for a number 𝑘? 

 

If 𝑘 is a positive number, does it feel right to you that we actually have three equivalent 

statements? 

𝐴 ≥ 𝐵 

𝐴 + 𝑘 ≥ 𝐵 + 𝑘 

𝑘 ∙ 𝐴 ≥ 𝑘 ∙ 𝐵 

 

(Remember, 𝐴 ≥ 𝐵 means that the quantity 𝐴 is larger, or possibly equal to, the quantity 𝐵.) 

 

 

 

 

Practice 78.1 Draw lines in this picture to connect pairs of statements that are equivalent.  
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Example: Please solve  

3𝑤 − 2 ≤ 16 

 

Answer:  

3𝑤 − 2 ≤ 16 

3𝑤 − 2 + 2 ≤ 16 + 2 

3𝑤 ≤ 18 

1

3
× 3𝑤 ≤

1

3
× 18 

𝑤 ≤ 3 

Solution set: All numbers less than, or possibly equal to, 3 

 

 

 

 

 

Practice 78.2: Solve 4𝑠 + 7 > 2𝑠 + 5 and present the solution set as a graph. 
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Practice 78.3: Let’s try playing with anti-apples and anti-bags.  

 

Here’s a picture of 𝐵𝐴𝐺 > 5. 

 
 

Let’s now add five anti-apples and one anti-bag to each side of the pan balance.  

 

 

Is there something to deduce from this picture? 
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The approach of Practice problem 78.3 suggests a means to understand inequalities that involve 

negative quantities (without resorting to “anti” shenanigans).  

 

We know that  

𝑨 < 𝑩        and         𝑨 + 𝒌 < 𝑩 + 𝒌 

 

are equivalent statements for any number 𝑘. Well, the expressions 𝐴 and 𝐵 themselves, even if they 

contain unknowns, do represent numbers—we just might not be privy to what numbers they actually 

are. 

 

Let’s choose 𝑘 to be the number −𝐴 +  −𝐵. 

 

Consequently, the statement    

𝐴 < 𝐵 

is equivalent to 

𝐴 +  −𝐴 +  −𝐵 <  𝐵 +  −𝐴 +  −𝐵 

Tidying this up, it reads 

 

−𝐵 < −𝐴 

We could rewrite this as  

−𝐴 > −𝐵 

if we like.  

 

Suppose 𝐴 < 𝐵 is a statement about the inequality of two quantities. 
 
Then 
 

𝑨 < 𝑩 
and 

−𝑨 > −𝑩 
are equivalent statements. 
 
Similar observations hold too the inequalities ≤, >, and ≥. 
 

 

 

Practice 78.4: Does this feel right to you? 

For instance, we know that  



 
 
 

74 
 

 

3 < 5 

From what we’ve just established, it must be that  

 

−5 < −3 

Do you agree that −5 is “less than” −3?  

 

a) Draw a number line and show the location of the points 3 and 5, and the location of the 

points −3 and −5 on it.  

 

If a number to the left is always considered “less than” a number its right, is 3 < 5  and  

is −5 < −3? 

 

b) Recall from Section 50 that we say 𝑎 < 𝑏  (read as “less than”) if there is a positive number 𝑛 

so that  

𝑎 + 𝑛 = 𝑏 

 

(that is, we need to “adding something to 𝑎 to get up to the number 𝑏”). 

 

For example, 3 < 5 because 3 + 2 = 5. 

 

 

i) Establish that −5 < −3 according to this definition. 

ii) Show that −13 < 100 according to this definition. 

 

iii) Establish that every negative number is “less than” zero. 

 

iv) Suppose 𝑎 < 𝑏. Then there is a positive number 𝑛 so that 𝑎 + 𝑛 = 𝑏. 

What is the value of −𝑏 + 𝑛?  

Explain why we have  −𝑏 < −𝑎. 

 

 

 

 

 

Practice 78.5: Establish that 𝐴 ≥ 𝐵  and −2𝐴 ≤ −2𝐵 are equivalent sentences. 
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Did you learn the following rule in school?  

 

If you multiply an inequality through by a negative number, then you must flip the sign of the inequality. 

 

Hopefully now you can see that no flipping is actually involved.  

 

For example, to answer the practice problem, we have  

 

𝐴 ≥ 𝐵 

𝐴 +  −𝐴 +  −𝐵 ≥ 𝐵 +  −𝐴 +  −𝐵 

−𝐵 ≥ −𝐴 

Now multiply through by the positive number 2 

 

−2𝐵 ≥ −2𝐴 

Notice that the inequality sign has not “flipped.” 

 

It is only when we choose to rewrite −2𝐵 ≥ −2𝐴 as  

−2𝐴 ≤ −2𝐵 

does “flipping” seem to occur. 

 

 

 

I often find it much clearer when working with an inequality to not multiply through by negative 

number: I just add quantities to each side of the inequality. That way I can keep the direction of the 

inequality straight.  

 

 

Example: Kindly solve  

3 − 2𝑟 ≥ 3 − 2𝑠 

 

and graph the solutions (with “𝑟” as the horizontal axis in the graph). 
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Answer: Let’s start by subtracting 3 from each side of the inequality. 

 

3 − 2𝑟 +  −3 ≥ 3 − 2𝑠 +  −3 

−2𝑟 ≥ −2𝑠 

Let’s now add 2𝑟 throughout 

−2𝑟 + 2𝑟 ≥ −2𝑠 + 2𝑟 

0 ≥ −2𝑠 + 2𝑟 

and add 2𝑠 throughout. 

0 + 2𝑠 ≥ −2𝑠 + 2𝑟 + 2𝑠 

2𝑠 ≥ 2𝑟 

Now multiply though by 
1

2
 to obtain 

𝑠 ≥ 𝑟 

The solution is the set of all values for 𝑠 and 𝑟  with 𝑠 having a value larger than or equal to 𝑟. 

 

To graph this, let’s collect some data values.  

 

 
 

This is not enough data to see a meaningful picture.  
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Here’s some more data points.  

 

Every point along the northeast diagonal line has 𝑟 and 𝑠 equal in value, which is a valid data point. And 

every point vertically above a point on this line represents a point with 𝑠 larger than 𝑟.  

 

The graph of the solutions is a diagonal half of the entire plane. 
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Practice 78.6  

a) Would the graph of 3 − 2𝑟 ≥ 3 − 3𝑠 be the same as the graph of 𝑠 ≥ 𝑟? 

b) In general, would two equivalent statements have the same graph? 

 

The graph of 𝑠 > 𝑟 would be similar to the graph of 𝑠 ≥ 𝑟. It just has the points along the northeast 

diagonal omitted.   

 

The way people indicate that is to draw a dashed line for the line of omitted points and not use a solid 

block of color for a region of points, using instead “line strokes” to indicate that a region is filled in. 

   

We could draw our previous graph similarly using a solid line for the included points along the boundary. 
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Practice 78.7 Graph  

2(𝑏 − 𝑎) + 2 < 6 − 2𝑎 

  

with the horizontal axis of your graph labeled “𝑎.” 

 

Practice 78.8  

a) Graph 𝑥 + 𝑦 = 0. 

b) Graph 𝑥 + 𝑦 ≥ 0 

c) Graph 𝑥 + 𝑦 > 0 

d) Graph 𝑥 + 𝑦 ≠ 0 

Label the horizontal axis of your graph “𝑥” in each case. 
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MUSINGS 
 
Musing 78.9  
a) Describe the graph of the solutions to (𝑎 − 𝑎) ∙ 𝑏 = 0. 
b) Describe the graph of the solutions to (𝑎 − 𝑎) ∙ 𝑏 ≥ 0. 
c) Describe the graph of the solutions to (𝑎 − 𝑎) ∙ 𝑏 > 0. 
 
Musing 78.10  
a) Create an inequality in one unknown using the symbol > whose solution set is all numbers 
different from zero.  
b) Create an inequality in one unknown using the symbol ≥ whose solution set is just the number 
zero.  
 

 

MECHANICS PRACTICE 
 
Practice 78.11 Solve each of these inequalities and graph its solutions. (Always choose to label the 
horizontal axis “𝑥.”) 
 
a)  −3𝑥 + 9 ≤ 3𝑥 + 9 
 
b)  𝑥(𝑥 − 2) + 2𝑥 < 4 
 
c) 3(𝑦 − 2) − (𝑥 − 2) ≠ 2(𝑦 − 𝑥 + 2) + 2  
 
d) 2𝑥 + 𝑦 + 3 ≤ 3(𝑦 + 1) 
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79. Squares and Square Roots 
 

A square with side length 5 units has area 5 × 5 = 25 unit squares. 

 

As we saw in Sections 11 and 60, we write 52 for 5 × 5 and call it five squared. The connection to 

geometry in this language is deliberate.  

 

And we can go in reverse.  

 

Suppose I gave you the area of a square first. Let’s say we have a square with area 36 squared units.  

It is natural to wonder what the base or “root” feature of this square must be. 

 

 
 

Of course, we are all thinking that the side length of the square must be 6 units and that I am using 
strange language to ask this.  
 
But this is the language al-Khwarizmi used to when thinking of an equation of the form 𝑠2 = 36. He 
used the Arabic word for root, which when transcribed into Latin by western Scholar became radix.   
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The symbol for “the root feature of a square,” that is, for square root is √, which we call a radix. But the 
symbol usually comes attached with a vinculum (as was discussed in Section 11). 
 
We write  
 

√36 = 6 
 

In the same way, we have √25 = 5. 

 

Practice 79.1 Compute the following square root values.  

(Remember, we are talking about quantities related to geometric square figures.)  

 

√100    √49   √196   √1024   √1.21  √
81

4
     

   

 

It is understood that the radix (and its vinculum) √∎ is a symbol from geometry, in which case all 

quantities being discussed when using the symbol are assumed to be from geometry. As such, they must 

be positive numbers. (All measurements of lengths and areas are positive numbers.) 

 

Writing  

√−9 

 

is meaningless, as there is no square of area − 9 in geometry. 

And writing  

√9 = 3   or  − 3 

is also meaningless as a square cannot have a side length of −3. 

 

 

This latter point is important. The equation 

𝑥2 = 9 

has solutions 

𝑥 = 3    or   − 3 

and writing this is good and correct. No radix was used here and so there is no implicit command keep 

this piece of work in the context of geometry. 
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Practice 79.2  

a) Is writing √11 +  −2 technically meaningful? If so, what is its value? 

b) Is writing √(−3)2 technically meaningful? If so, what is its value? 

 

Practice 79.3 a) Describe the solution set to 𝑠2 = −3. 

b) Describe the solution set to 𝑠2 = 0. 

 

There is one exception to this “geometry rule.” People will consider squares of zero area. Such squares 

have a side length of zero units. It is accepted to observe and write:  

 

√0 = 0 

 

Here’s the formal definition of the square root of an allowed number. 

 

If 𝑎 is a positive number, or possibly zero, then the square root of 𝑎 is a number √𝑎 with the 

property that √𝑎 × √𝑎 = 𝑎. 

 

 

We can check that √16 = 4, for instance, by noting that 4 × 4 = 16.  

(Picturing an actual square is always a good move.) 

 

Also, √
81

4
=

9

4
 is not correct because 

9

4
×

9

4
=

81

16
,  which is not 

81

4
.   
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As squares can shrink and grow to any size we want, every positive number (and zero) has a square root.  

 

 

Practice 79.4 Does the square root of two exist? 

 

One way to answer this question is to exhibit a square of area 2. The side length of that square 

is then, by definition, the square root of 2. 

 

Draw a square with a side length 1 and draw a tilted square with side the diagonal of that unit 

square. 

 

Can you see that the titled square has area 2. 

  
 

 

Comment: We mentioned that the diagonal of the unit square has length √2 back in Section 59, 

but this picture gives a more natural way to see that this must be so.  
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We proved that √2 is an irrational number in Section 59, and we tried to write √2 as a decimal in 

Practice Problem 56.17. 

 

Practice 79.5 On a calculator what is √2 as a decimal rounded to some large number of decimal 

places?  

 

Practice 79.6 Use this picture to demonstrate that √5 exists. 

 

 

Example: Kindly solve 2√𝑤 + 4 = 0. 

Answer: The use of the radix indicates that we must be thinking of positive (or zero) values with 

regard to squares and square roots. 

 

We have  

2√𝑤 + 4 = 0 

2√𝑤 = −4 

√𝑤 = −2 

 

The original equation is equivalent to an equation which can never be true. (A square root value 

cannot be negative.)  

 

The original equation has no solutions.  

 

 



 
 
 

86 
 

 

 

MUSINGS 
 

Musing 79.7 Collect some data for the equation 𝑏 = √𝑎. 
Graph the data with the horizontal axis labeled “𝑎.” 
 
 

 

MECHANICS PRACTICE 
 

Practice 79.8 Make the expression √
√3

2.1
× √√3

2.1
 a tinier bit friendlier. 

 

Practice 79.9 What is the value of √√√256 ?    

 

Practice 79.10 Show that 
3√20

2
 is the same number as 

30

√20
. 

 
Practice 79.11 Please solve each of these math sentences. 
 

a) 4(√𝑟 + 3) = 3√𝑟 + 5 

 
b) 𝑥(𝑥 + 3) − 2𝑥 + 2 ≤ 𝑥 − 5 
 

c) √𝑎 − 3 ≠ 3 − √𝑎 
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80. Going Rogue 
 

Two mathematical sentences (mentioning the same unknowns) are equivalent if they have exactly the 

same solutions. And the process of solving an equation or an inequality is to carefully transform the 

given sentence into an equivalent one whose solutions we readily recognize.  

 

Thanks to the al-Khwarizmi, we have a number of algebraic steps we can take that won’t alter the truth, 

and hence solutions, of a given math sentence.  

 

• Applying a fundamental rule of arithmetic to one piece of a math sentence won’t affect the 

truth of the sentence. 

 

For example,  

3(𝑥 + 6) = 2𝑥   and    3𝑥 + 18 = 2𝑥 

 

are equivalent sentences because a rule of arithmetic allows us to expand brackets and rewrite the 

piece of the sentence 3(𝑥 + 6) as 3𝑥 + 18. 

 

 

• Adding (or subtracting) identical quantities to each side of a math sentence does not affect 

the truth of the sentence.  

 

For example, the adding −𝑎 to each side of this inequality  

 

3𝑎 + 2 ≥ 𝑎 − 1 

gives the equivalent sentence  

3𝑎 + 2 +  −𝑎 ≥ 𝑎 − 1 +  −𝑎 

which, by the first point, is equivalent to  

2𝑎 + 2 ≥ −1 

 

• Multiplying each side of a math sentence by a quantity known to be a positive number won’t 

affect the truth of the sentence. 
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For example, scaling each side of the sentence 2𝑎 + 2 ≥ −1 by a factor of 
1

2
 gives the equivalent 

sentence 

𝑎 + 1 ≥ −
1

2
 

 

And that’s it! These are the three algebraic operations that preserve the truth of math sentences.  

 

 Practice 80.1 Are  

𝑏 > 2 

and  

(𝑏2 + 1)𝑏 > 2(𝑏2 + 1) 

 equivalent sentences? 

 

One need not fuss about what happens when we multiply through by a negative value: the addition and 

subtraction of quantities will handle that. 

 

Practice 80.2  

a) Show that  

−𝐴 = −𝐵    and     𝐴 = 𝐵 

are equivalent sentences by adding 𝐴 + 𝐵 to each side of the first equation. 

 

b) Show that  

−3 ≤ 𝑥    and    −𝑥 ≤ 3 

are equivalent sentences.  

 

But we did see “rules” we can follow if you prefer the shortcut they offer. 

 

• Multiplying each side of an equality (=) by a negative number does not affect the truth of 

the equality. 

• In multiplying each side of an inequality (> or ≥  or < or ≤) by a negative number, one most 

also “flip” the direction of the inequality sign in order to preserve truth.   

   

Practice 80.3 Is there a special “rule” to be deduced for multiplying an inequality of the from 

𝐴 ≠ 𝐵 through by a negative number?  
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One is, of course, welcome to transform a math sentence in any way one desires.  

But if you deviate from the bulleted items listed on the previous two pages, then all bets are off as to 

what remains true about the new math sentence you create. It is up to you to decide if the solutions to 

your new sentence bear any relevance to the solutions of the original sentence.  

 

For example, here’s an equation. 

 

𝑥 = 2 

 

It has just one solution, namely that 𝑥 must have the value 2 to make it a true sentence.  

 

Now let’s square each side of the equation. (This is a rogue move: it’s not one of the allowed moves of 

algebra.)  

 

We get the sentence 

𝑥2 = 4 

 

This new sentence has two solutions: 𝑥 must be 2 or −2 to make the sentence true.  

 

The sentences 𝑥 = 2 and  𝑥2 = 4 are not equivalent sentences. 

 

 Solution sets will likely change if you deviate from the standard steps!  

 

However, there is some potential value here. 

 

We can observe that if two numbers are equal, then the squares of those two numbers will also be 

equal. So, if we have some values that make a math sentence  

𝐴 = 𝐵 

 

true, then those values will also make the sentence  

𝐴2 = 𝐵2 

true. 

 

The solutions to 𝐴 = 𝐵 will appear among the solutions to 𝐴2 = 𝐵2. 

 

And we saw that: the solution to 𝑥 = 2 is among the solutions to 𝑥2 = 4.  
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So, if you feel like squaring each side of an equation, go for it. But you now know that your equation will 

likely have more solutions than the original equation, but the solutions to the original equation you seek 

will be among them.  

 

You can then just check each potential solution in turn to see which ones actually work.  

 

 

Comment: School curricula call the appearance of additional potential solutions a phenomenon 

of extraneous solutions. They require students to “check all your solutions” to weed out which 

ones don’t apply to the original equation. And that’s appropriate if a student has taken a step 

that’s broken away from the standard steps of algebra (our previous bullet points). 

 

But if a student has not deviated from the standard steps of algebra, then they can be assured 

that all the solutions obtained are all the solution of the original equation. There is no need to 

“check all your solutions” (except to catch arithmetic errors, perhaps). 

 

 

Practice 80.4  

a) Describe the set of solutions to 

√𝑤 = −3 

b) Squaring each side of this equation gives 

𝑤 = 9 

 What are the solutions to this equation? Are any of the solutions “extraneous”? 
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Going rogue is dangerous.  

 

For example, consider this equation  

 

(𝑏 − 5)2 = 36 

Students are often encouraged to take the square root of each side of the equation and to even draw in 

the radix. 

 

This leads students to then write 

𝑏 − 5 = 6 

 

𝑏 = 11 

 

I have no idea what taking the square root of each side of math sentence typically does to the set of 

solutions of the original sentence. I am not sure what to say about concluding “𝑏 must have value 11.” 

 

Practice 80.5 

a) Does 𝑏 having the value 11 make the sentence (𝑏 − 5)2 = 36 true?  

 

b) Have we fully solved (𝑏 − 5)2 = 36? Are we missing solutions?  

 

Like I said, if you choose to go rogue, you are completely on your own! 
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 Example: Solve  

𝑥

𝑥
= 1 

 

 Answer Attempt 1: Multiply each side of the equation by the number 𝑥 to obtain  

 

𝑥 ×
𝑥

𝑥
= 𝑥 × 1 

 

𝑥 = 𝑥 

Every possible value for 𝑥 makes this final sentence true.  

 

Solution set: all numbers. 

 

The trouble with this answer is that we’ve subtly gone rogue.  

 

We are welcome to multiply an equation through by a number, as long as that number is positive or 

negative—but not zero! 

 

So, we have to be careful with our thinking.  

 

Answer Attempt 2: If 𝑥 represents a number that is not zero, then we can multiply each side of 

our equation 𝑥 to obtain  

𝑥 ×
𝑥

𝑥
= 𝑥 × 1 

 

𝑥 = 𝑥 

Every possible value for 𝑥 makes this final sentence true—but remember, we are only 

considering non-zero numbers at present.  

 

Solutions so far: The set of all non-zero numbers. 

 

So, what if we do consider 𝑥 to be the number zero?  

 

Well, in that case our math sentence 
𝑥

𝑥
= 1 is not meaningful, yet alone true. (We can’t have a 

denominator of zero in a fraction.) So, zero is not a solution after all.  

     

Final answer: The solutions are all non-zero numbers. 
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Practice 80.6 Godspeed was asked to solve this equation: 

 

𝑎 × 𝑎 = 𝑎 

 He presented this solution: 

 

𝑎 × 𝑎 = 𝑎 

1

𝑎
× 𝑎 × 𝑎 =

1

𝑎
× 𝑎 

𝑎 = 1 

   I conclude that there is one solution: 𝑎 is 1 

 

 Any commentary? 

 

Example: Solve  

1

𝑥 − 3
= 2 

 

Answer: The equation does not make sense, yet alone be true, if 𝑥 is 3. We have to keep the 

value 3 out of our considerations. 

 

But if 𝑥 is not 3, then 𝑥 − 3 is not zero and we are welcome to multiply both sides of the 

equation by 𝑥 − 3 to get an equivalent equation (but still under the proviso that 𝑥 is not 3). 

 

(𝑥 − 3) ×
1

𝑥 − 3
= (𝑥 − 3) × 2 

1 = 2𝑥 − 6 

We can keep going 

7 = 2𝑥 

1

2
× 7 =

1

2
× 2𝑥 

3
1

2
= 𝑥 

We have the solution that 𝑥 is 3
1

2
  (and the fits the proviso of not being 3! 
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MUSINGS 
 
Musing 80.7 Consider the equation  

𝑥 <
1

𝑥
 

 
a) Is 2 a solution to this equation? Is −2 a solution?  
 

b) Is 
1

2
 a solution to this equation? Is −

1

2
 a solution?  

 
c) Why can’t zero be considered as a potential solution to this equation? 
 
d) If we restrict our minds to consider only positive values for 𝑥, show that the equation is then 
equivalent to 𝑥2 < 1. What then are the solutions to the equation (within this restricted mindset)? 
 
e) If we restrict our minds to consider only negative values for 𝑥, show that the equation is then 
equivalent to 𝑥2 > 1. What then are the solutions to the equation (within this restricted mindset)? 
 
f) Describe the full set of solutions to the original equation.   
 

 

MECHANICS PRACTICE 
 
Practice 80.8 Fully solve 
  

𝑥 + 3

𝑥 − 3
= 0 

 
explaining your reasoning with care as you go along.  
 
Practice 80.9  Give two solutions to the equation  
 

(𝑎 + 3)2 = 100 
 
Practice 80.10 Kindly solve  
 

√𝑤 + 6 = 9 
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Chapter 10 

Lines  
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81. Do Straight Lines Exist? 
 
Suppose I asked you to go outside and walk in a straight line directly east. Barring obstacles such as 
fences, buildings, lakes, mountains, oceans, and such, do you feel you could do that—at least for some 
distance? 
 
Would the path feel “straight” to you?  
 
Most people would say it does feel as though you are walking in a straight line when heading directly 
east, but also acknowledge that if they kept going (again barring obstacles) they would eventually return 
to start having followed a line of latitude circling a portion of the Earth. This not the expected behavior 
of a straight line!  
 
 

Practice 81.1: If you stand at the North Pole, which direction is east?     
 

 
Hence my question. We feel like we can walk a straight path on the surface of the Earth, but because the 
Earth is curved, we know such paths are not straight.  
 
So, do straight lines exist? 
 
Of course, we can say that the edge of a door, for instance, is meant to be a straight line but, if 
examined under a magnifying glass, it is likely not. (And certainly, at the atomic level that allegedly 
straight edge is bumpy.) So, we can argue that perfectly straight lines don’t exist in our practical world.  
 
What about in our intellectual world? 
 
We’ve stepped back from the Earth and seen that it is a sphere. There are no straight lines on the 
surface of the Earth. But what about a line through the Earth or out from it? Are there straight lines in 
the universe? 
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Imagine a brave astronaut having agreed to conduct an experiment. She is going to fly away from the 
Earth in a rocket ship in a straight line and never to deviate from a straight path. 
 
And suppose some 300 years later she reappears from the opposite direction, fervently claiming that 
she did not deviate from a straight path.  
 
What would we conclude?  

 

 

We can’t step back from the universe to see what shape it is, but we would have to conclude that the 

universe is curved in some way analogous to the surface of the Earth being curved.  

 

Maybe straight lines don’t exist and can’t exist at all? 

 

 

 

Nonetheless, we feel in our minds that we know what a “straight line” is and that such things do exist, 

perhaps just intellectually.  

 

Can we pin down what exactly is on our heads on this matter? 
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What Makes a Line “Straight” 

We feel like the ground is “flat,” at least in our very immediate surrounds.  

And we feel like we know what it means to have a perfectly flat, “level” line.  

 

Here’s a picture of something we probably agree represents one (or, at least, a section of a flat, level 

line). 

 

 

 

What feels flat about this line is that no point on it is “higher” than any other point. 

 

Any how do we measure height? By measuring along another type of line we feel also exists, a vertical 

line.  

 

We can go down a rabbit hole trying to make sense of all the interconnected words we keep using—flat, 

level, horizontal, vertical, high, and so on.  

 

But rather than delve into the realm of mathematical philosophers, let’s just claim, for now at least, that 

two basic examples of “straight lines” exist.  

Horizontal and vertical lines exist and are examples of straight lines. 

Let’s next follow our intuition about what makes other lines “straight” having these two basic examples 

to bounce off of. (And if down the road we find a way to firm up this shaky and questionable start, we 

will!) 
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Okay. Given we’ve got horizontal and vertical lines to play with, what makes us think that a line like this 

diagonal one also deserves to be called “straight”? (Again, this is just a section of the full picture we 

have in our minds.) 

 

One thing to note is that if we were to draw horizontal segments along the line, we’d expect to see the 

line rising at the same angle from the horizontal at all places along the line. 

 

  
 

Rather than try to pin down what we mean exactly by “angle,” let’s get at this notion of upness by 

making use of vertical lines.  
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For line to be straight, we expect for each horizontal segment say, 1 unit long, drawn from a point on 

the line, the same vertical distance is needed to return to the line from the endpoint of the segment.  

 

 

 

Certainly not all curves drawn in the plane have this “constant height” property. So, it looks we’re 

capturing the notion of “straightness.”  

 

 

Comment: I have fallen into the convention of assuming horizontal lines, like the horizontal axis of a 

graph, are drawn with positive measurements made rightward, and vertical segments are drawn with 

positive measurements made upwards.  

 

Let’s follow that convention just to be consistent with our convention for graphing.   
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We can make a definition of a what it means for a curve drawn in the plane to be straight. 

 

There are two fundamental examples of straight lines: horizontal lines and vertical lines. 

For any other curve drawn in the plane, conduct this experiment: For each point on the curve 

draw a horizontal line segment of length 1 (measured rightward) and determine the vertical 

distance required (measured upwards) to return to a point on the curve.  

 

If these vertical distances are consistently the same value, call it 𝑚, then the curve is called a 

straight line and we say that the line has slope 𝑚. 

 

 

 

For some reason it has become the custom to use the letter 𝑚 to denote the common height value of a 

given straight line. It seems no one really knows how this came to be so (though a common speculation 

espoused on the internet is that it comes from the French word monter meaning “to climb”). 

 

However, folk in some counties use the letter 𝑘 or the letter 𝑎 for slope. They might also use the word 

gradient instead of the word slope. 
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Practice 81.2 Pull out a ruler and determine the slope of this line.  

(Physically measure and draw horizontal sections one unit long and determine the length of the 

matching vertical segments that bring one back up to the line.)   
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A PROBLEM 

 

The previous practice example brings up a concern. 

 

Jennie is Australian, and the ruler she used to answer the previous question was marked in 

centimeters. Thus, she drew horizontal segments 1 cm long and noticed that 2 cm of vertical 

length brought her back up to the line each time.  

 

She concluded: 

The slope of the line is 2. 

(Actually, being Australian, she wrote: “The gradient of the line is 2.”) 

 

On the other hand, 

Jared is American and answered this question using a ruler marked in inches. He drew horizontal 

segments 1 inch long and saw that vertical segments 2 inches long aways brought him back up 

to the line. 

 

He concluded: 

The slope of the line is 2. 

  

Our previous definition of “straight” never specified what unit of length we should use to determine the 

slope of the line. Luckily, Jennie and Jared got the same value for slope using different units. But will that 

always be the case?  

 

This could be a serious issue.   

For instance, when Jennie looked at Jared’s work, she thought it was strange that he chose to draw a 

horizontal segment 2.54 cm long. She agrees that he then measured a matching vertical segment 

5.08 cm long but doesn’t understand why Jared then also concluded that the slope of the line is 2.   

 

Jared’s work is peculiar from her perspective.   

 

 

Question: Would Jennie’s work likely be equally perplexing to Jared? 
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RESOLVING THE ISSUE 

Let’s consider a line of slope 𝑚. 

 

 
 

When determining the slope of the line, it seems we need to be more flexible about what the length of 

the horizontal segment can be, just in case someone else has a different notion of “one unit of length.” 

So, let’s examine what happens with different horizontal segment lengths. 

 

For starters, this picture shows that if we draw a horizontal length 2 units long, it will take a vertical 

length 2𝑚 units long to return to the line.  

 
 

 

This picture shows that if we draw a horizontal length 3 units long, it will take a vertical length 3𝑚 units 

long to return to the line. 
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And this picture shows that if we draw a horizontal length 
1

2
 units long, it will take a vertical length 

1

2
𝑚 

units long to return to the line. 

 

We’re being led to believe that if we scale the horizontal length we draw by a factor 𝑘 , then the 

matching vertical line segment we draw is also scaled by the same factor 𝑘. 

 

Jargon: When given a straight line and drawing a horizontal segment from a point on the line: 

The length of the horizontal segment is called the run.  

The length of the matching vertical segment to reach back to the line is called the rise. 

The quantity  
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
 

is called the slope (or gradient) of the line. 

 

With a horizontal segment of length 1 unit and vertical segment of length 𝑚 units, the slope of the line 

is 
𝑚

1
, which equals 𝑚, just as we had before.  

 

If the picture is scaled by a factor 𝑘, then the slope of the line is computed as 
𝑘𝑚

𝑘
, which still gives the 

value 𝑚.  

 

“Rise over run” is sure to equal the slope of the line, no matter how you choose to scale the picture.  

 

Phew!  
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Having thought this through, Jennie can now say: 

Jared’s work is fine!  

 

As there are 2.54 cm in an inch, his picture is just a scaled version of my picture.  

He has 𝑘 = 2.54. 

 

When I work out slope, I get 
2

1
 (two centimeters over one centimeter), which is 2. 

 

Whan Jared works out slope, he gets, in my opinion, 
2.54×2

2.54×1
, which, of course, gives the same 

value 2. 

Our computed values for slope were sure to agree. 

 

 

Practice 81.3  On a sheet of graph paper, draw examples of lines of the following slopes. 

a) Slope 3   b) slope 
1

3
        c) slope 

4

5
     d) slope −2       e) slope −1        f) slope 0 

 (For part f), what does it mean to measure −2 units upwards?) 

 

Practice 81.4  Jennie and Jared each draw an example of a line of slope −
1

2
 on graph paper, but 

the size of the squares on their sheets differ. Does that matter? 

 

If they put their papers on top of one another, would they see that they’ve drawn the same 

line?  
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MUSINGS 
 
Musing 81.5 A straight line makes an angle of 45° to each horizontal line segment. 
What is the slope of the line? 
 

 
 

Musing 81.6 What does this sign mean?  
 

 
 

Musing 81.7  
a) Does a horizontal line have a value for slope? 
b) Does a vertical line have a value for slope? 
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MECHANICS PRACTICE 
 

Practice 81.8 Find the slope of each of these straight lines.  
 

 
 
 
Practice 81.9 The slope of the line shown is:  

 

a) 
𝑎

𝑏
            b) 

𝑏

𝑎
             c)  −

𝑎

𝑏
           d)  −

𝑏

𝑎
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Practice 81.10  Here’s a horizontal line drawn on some graph paper with axes labeled 𝑥 and 𝑦. 
 
What’s an equation for this line? 

 

 
 
 
 
To answer the question we can collect some data values we see from the graph. 
 
It is evident that for a data point (𝑥, 𝑦) to be on this line, it must have 𝑦 equal to 
3, and conversely, any data point with second coordinate 3 will be on this line. 
 
The equation of the horizontal line is thus 
 

𝑦 = 3 
  
(All the values for 𝑥 and 𝑦 that make this equation true give a point on this line.) 
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Your Turn:  Find the equation of this vertical line.  
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82. The Equation of a Line 
 

Let’s start with an exercise. It’s a meaty one!  

 

Do your best to work through the ideas here on your own before reading on.  

 

Example:  A robot has been programmed to walk in a straight line at a uniform speed. 

To keep track its location, a grid like graph paper was drawn on the floor of the lab and two 

axes, labeled 𝑥 and 𝑦 were marked.  

 

At time 𝑡 = 0 minutes the robot was at position (1,3). After one minute, at time 𝑡 = 1 minute, 

the robot is at position (5,5).   

 

 

a) Where will the robot be at time 𝑡 = 2 minutes? Plot this location on the grid. 

 

b) Where will the robot be at time 𝑡 = 3 minutes? At time 𝑡 = 10 minutes?  

(Warning: The robot will be off the grid as shown at these times. Imagine that the grid 

extends beyond what is shown.)   

 

c) Where was the robot at time 𝑡 = 30 seconds? Plot this location on the grid. 

 

d) Where was the robot at time 𝑡 = 45 seconds? Plot this location on the grid. 
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e) Where was the robot a minute before these observations started, at time 𝑡 = −1 seconds? 

Plot this location on the grid.  

 

f) At what time was the robot at position (7,6)? 

 

g) At what time will the robot be at position (21, 13)? 

 

h) Will the robot ever be at position (13, 12)? If so, at what time? If not, how do you know? 

 

i) Was the robot ever at position (−9, −2)? If so, at what time? If not, how do you know? 

 

BONUS CHALLENGE:  

Describe the location of the robot, as a point in the plane, at a general time 𝑡. 

 

Check that what you write down gives the location (1,3) for 𝑡 = 0, the location (5,5) for 𝑡 = 1, and 

matches all your answers to the various parts of this exercise.  
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Okay, my turn to go through the work I just asked you to do.   

 

a) and b): Where will the robot be at times 𝑡 = 2 and 𝑡 = 3 minutes? 

 

We see that the robot, in its diagonal motion, is shifting 4 units rightward and 2 units upward each 

minute. 

  

So, after one more minute, it will shift another 4 units to the right and 2 units upwards. 

a) At time 𝑡 = 2 minutes the robot will be at position (𝟓 + 4, 𝟓 + 2) = (9,7). 

After another minute, it will shift again the same amount from (9,7) 

b) At time 𝑡 = 3 minutes the robot will be at position (𝟗 + 4, 𝟕 + 2) = (13,9). 
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We can keep this line of thinking and build up to understanding where the robot will be at time 𝑡 = 10 

minutes, one minute at a time.  But let’s see if we can start being swifter in our work. 

 

At the start, time 𝑡 = 0 minutes, the robot is at position (1,3). After ten minutes, the robot will shift 

rightward 4 units, ten times (that’s 40 units rightward in total) and shift upwards 2 units, ten times 

(that’s 20 units upwards). Thus 

 

b) Continued: At time 𝑡 = 10 minutes the robot will be at position (𝟏 + 40, 𝟑 + 20) = (41,23). 

 

c) and d): Where was the robot at times 𝑡 = 30 and 𝑡 = 45 seconds?  

 

At 𝑡 =
1

2
 minutes (30 seconds), the robot would have moved only half as far as it did in one minute: only 

1

2
× 4 = 2 units rightward and 

1

2
× 2 = 1 unit upwards. 

c) At 𝑡 =
1

2
 minutes, the robot was at position (𝟏 + 2, 𝟑 + 1) = (3,4). 

 

At 𝑡 =
3

4
 minutes (45 seconds), the robot would have moved only three-quarters as far as it did in one 

minute: namely, 
3

4
× 4 = 3 units rightward and 

3

4
× 2 =

3

2
 units upwards. 

d) At 𝑡 =
3

4
 minutes, the robot was at position (𝟏 + 3, 𝟑 +

3

2
) = (3,4

1

2
). 
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e) Where was the robot at time 𝑡 = −1 minutes? 

One minute before these observations, the robot must have been 4 units leftward and 2 downward 

from the starting location (1,3). 

e) At time 𝑡 = −1 minutes, the robot was at position (𝟏 − 4, 𝟑 − 2) = (−3, 1). 

 
 

 

f) and g):  When was the robot at (7,6) and (21,13)? 

In order to move from the start (1,3) to the point (7,6) the robot needs to shift 

7 − 1 = 6 units rightwards 

6 − 3 = 3 units upwards 

 

In one minute, it shifts 4 and 2 units in these directions, so another half a minute will do the trick. 

f) At time 𝑡 = 1
1

2
 minutes the robot will be at position (7,6). 
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(My picture is getting messy!) 

 

  

To move from the starting position (1,3) to (21,13) the robot needs to shift  

21 − 1 = 20 units rightwards 

13 − 3 = 10 units upwards 

In each minute it moves 4 and 2 units in these directions, so 4 minutes of motion will do the trick. 

 

g) The robot will be at position (21,13) at time 𝑡 = 4 minutes. 
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h) and i):  Was the robot at (13,12) and (−9, −2)? If so, when? 

 

To move from the starting position (1,3) to (13,12) the robot needs to shift  

13 − 1 = 12 units rightward 

12 − 3 = 9 units upwards 

In each minute it moves 4 and 2 units in these directions. 

 

So, in three minutes the robot will shift 12 units to the right—as we want—but it will shift only shift 6 

units upwards, not 9. 

h) The robot does not pass through the point (13,12). 

 

 

If the robot was, at some point of time at location (−9, −2), then it moved to (1,3) by shifting  

9 + 1 = 10 units rightwards 

2 + 3 = 5 units upwards 

 

 

It can shift 10 units rightward in 2
1

2
 minutes (since 10 = 2

1

2
× 4). 

In that time it would shift 2
1

2
× 2 = 5 upwards, which is perfect! 

 

 

i) The robot was indeed at position (−9, −2) at time 𝑡 = −2
1

2
 minutes. 

 

 

BONUS CHALLENGE: 

During  one minute of motion the robot shifts 4 units rightward and 2 units upward. 

So, during 𝑡 minutes of motion, the robot shifts 

4𝑡 units rightwards 

2𝑡 units upwards 

It’s location at time 𝑡 minutes will thus be  

(𝟏 + 4𝑡, 𝟑 + 2𝑡) 

 

(and this agrees with all the answers just presented). 
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What Are We Learning? 

The robot’s motion was in a straight line, and we just saw how useful it is to think in terms of 

shifts rightward and shifts upward 

to understand and answer questions about its motion. 

 

We recognize that these shifts were called run and rise, respectively, in the previous section. 

 

 

Also, during the course of the exercise, you may have noticed that as the robot moves from location to 

location, its vertical shift is always half its horizontal shift. 

 

Question: Can you see this in my answers to parts f), g), and i)?  

And can you see the problem with part h)? The desired vertical shift there was not half the 

horizontal shift.  

 

Now that I reflect on this, I shouldn’t be surprised by this. We are just noticing that robot is following the 

path of a straight line of slope one half: for each horizontal segment of length 4, the matching vertical 

segment to return to the line is 2 units long.  

 

 
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
=

vertical shift

horizontal shift
=

2

4
=

1

2
 

 

But I like this idea of explicitly thinking about horizontal and vertical shifts. 
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Leaning into Shifts 

 

Here are some practice problems worth leaning into. 

 

Practice 82.1 

a) What value must I add to 3 on the number line to reach the number 7? 

b)  What value must I add to −2 on the number line to reach the number 9? 

 

c) What value must I add to −4 on the number line to reach the number −9? 

 

 

 

 

 

 

  

 

d) What number must I add to 100 to reach the number 120? 

e) What number must I add to 100 to reach the number −120? 

f) What number must I add to a number 𝑎 on the number line to reach the number 𝑏?  

Does your answer here jibe with your answers to the previous five questions (especially part b), 

c) and e)? 
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Practice 82.2  

What is the horizontal shift from point 𝐴 to point 𝐵? 

What is the vertical shift from point 𝐴 to point 𝐵? 

What is the slope of the line on which these two points sit? 

 

 

Practice 82.3 

What is the horizontal shift from point 𝐴 to point 𝐵? 

What is the vertical shift from point 𝐴 to point 𝐵? 

What is the slope of the line on which these two points sit? 

 

 

Now to be mind-bendy … 

What is the horizontal shift from point 𝐵 to point 𝐴? 

What is the vertical shift from point 𝐵 to point 𝐴? 

Why is the value of  
vertical  shift 

horizontal shift
 computed this backwards way the same value as you 

computed just above for the slope of the line?  
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Practice 82.4 Being abstract … 

If (𝑎, 𝑏) and (𝑥, 𝑦) are two points on a line, what is a formula for the slope of the line on which 

they sit? 

 

 

 

I’m liking this shift thinking! 

 

Example: What must be true about two values 𝑥 and 𝑦 for the point 

(𝑥, 𝑦) to lie on the line of slope 7 that passes thought the point (4, 6)? 

Answer: We are told that for any two points on the line  

 
vertical shift

horizontal shift 
= 7 

 

In particular, for the two points mentioned, we must have  

𝑦 − 6

𝑥 − 4
= 7 

This is an equation that must be true for the point (𝑥, 𝑦) to lie on the 

line described … almost!  

 

 

There’s a problem with what we have: the point with (4,6) is on the line but the  

equation 
𝑦−6

𝑥−4
= 7 is meaningless if 𝑥 is the number 4 and 𝑦 is the number 6.  

 

We need an equation that works for all potential points (𝑥, 𝑦) on the line.  

 

Hmm. 
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Let’s go back to the multiplicative thinking of the last section. If a line has slope 𝑚, then a 

horizontal segment (shift) of a certain length will be matched with a vertical segment (shift) of 

length 𝑚 times as long.  

 

 

In our example, this means that our vertical shift 𝑦 − 6 is seven times as 

long as our horizontal shift 𝑥 − 4. This gives the equation  

 

𝑦 − 6 = 7(𝑥 − 4) 

 

And this equation holds true even for the data point (4, 6). 

Wonderful!  

 

 

 

Practice 82.5 

a) Verify that setting  𝑥 = 4 and 𝑦 = 6 in the equation 𝑦 − 6 = 7(𝑥 − 4) does indeed give a 

true math sentence.  

 

b) If 𝑥 = 5, what value for 𝑦 then makes the equation a true? 

 

c) If 𝑦 = 20, what value for 𝑥 makes the equation true? 

 

d) Is the point (0, −22) on the line?  

 

e) What is the point on the line that has second coordinate equal to zero? 

 



 
 
 

125 
 

 

We’ve discovered the equation of a line. 

 

If a line of slope 𝑚 passes through a point (𝑎, 𝑏), then for another point (𝑥, 𝑦) to be on the 
line, we need the vertical shift between the two points to be 𝑚 times the horizontal shift 
between the points. 
 

 
 
This leads to the equation 

𝑦 − 𝑏 = 𝑚(𝑥 − 𝑎) 
 

Any data point (𝑥, 𝑦) that makes this equation a true sentence is a point on the line, and vice 
versa, any point on the line represents a data point that makes the equation true. 
 

 

 

Example: Find the equation of the line that passes through the points (−1,2) and (3, 10). 

Answer: These two points have  

horizontal shift = 3 − (−1) = 4 

vertical shift = 10 − 2 = 8 

 

So, the slope of the line is  
𝑟𝑖𝑠𝑒 

𝑟𝑢𝑛
=

vertical shift 

horizontal shift
=

8 

4
= 2 

  

So, we seek the equation of the line of slope 2 that passes through the point (−1,2) and the 

point (3,10). 
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Let’s work with the point (−1,2). To shift to another point (𝑥, 𝑦) we need the vertical shift to be 

double the horizontal shift. This gives the equation 

 

𝑦 − 2 = 2(𝑥 − (−1)) 

that is, 

𝒚 − 𝟐 = 𝟐(𝒙 + 𝟏) 

That’s the equation of the line.  

Done!  

 

But I am worried! What if we used the point (3,10) instead? That seems to give a different equation for 

the line, namely. 

𝒚 − 𝟏𝟎 = 𝟐(𝒙 − 𝟑) 

Which equation is correct?  
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Well, let’s play with each of the equations. 

 

First: 

𝑦 − 2 = 2(𝑥 + 1) 

𝑦 − 2 = 2𝑥 + 2 

𝑦 − 2 + 2 = 2𝑥 + 2 + 2 

𝑦 = 2𝑥 + 4 

 

Our first equation is equivalent to the equation 𝑦 = 2𝑥 + 4. 

 

Now the second equation: 

𝑦 − 10 = 2(𝑥 − 3) 

𝑦 − 10 = 2𝑥 − 6 

𝑦 − 10 + 10 = 2𝑥 − 6 + 10 

𝑦 = 2𝑥 + 4 

 

Our second equation is also equivalent to 𝑦 = 2𝑥 + 4. 

 

So, we have three equivalent equations for this line: 

 

𝑦 − 2 = 2(𝑥 + 1) and 𝑦 − 10 = 2(𝑥 + 3) and 𝑦 = 2𝑥 + 4 

 

Practice 82.6  

a) The point (100, 204) also happens to be on the line. Show that the  

equation 𝑦 − 204 = 2(𝑥 − 100) is also equivalent to 𝑦 = 2𝑥 + 4. 

 

b) OPTIONAL CHALLENGE: Show, in general, that if (𝑝, 𝑞) is any other point on the line, then 

the equation 𝑦 − 𝑞 = 2(𝑥 − 𝑝) is sure to be equivalent the equation 𝑦 = 2𝑥 + 4 as well!    
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Schoolbooks typically use only the letters 𝑥 and 𝑦 to represent the unknowns in an equation and, when 

drawing graphs of such equations, always set the horizontal axis as the  𝑥-axis and the vertical one as 

the 𝑦-axis. I’ve been following that practice too in this section. 

 

They also prefer to rewrite equations, if it is possible, in the form  

 

𝑦 = something involving 𝑥 

 

Such a form of an equation is often called the standard form of the equation. 

 

We’ve seen several different, but equivalent, equations for the line in our worked example. But they all 

led to the same standard form equation.  

 

𝑦 = 2𝑥 + 4 

 

So that is it clear we all recognize and can talk about the same equation, schoolbooks will insist that the 

equation of a line be presented in standard form, if possible. 

 

 

The standard form of a line is the equation for the line written as  
 

𝑦 = 𝑚𝑥 + 𝑏 
 

for some numbers 𝑚 and 𝑏  
(assuming that the equation can be rewritten to follow this form). 

 

 

 

Practice 82.7 Look back at practice problem 81.10. 

Can the equation of a horizontal line be written in standard form? 

Can the equation of a vertical line be written in standard form?  
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School books go to great lengths to make sure students have a strong grasp of the “meaning” of the 

numbers 𝑚 and 𝑏 that appear in the standard form 𝑦 = 𝑚𝑥 + 𝑏 of the equation of a line.  

 

Practice 82.8 Consider the equation 𝑦 = 5𝑥 + 3 of a line. The graph of this equation is a line.  

 

a) When 𝑥 = 0, what is the appropriate value for 𝑦 that makes the equation true? 

Plot this point on the graph paper. 

 

b) When 𝑥 = 1 (a horizontal shift of one unit from part a), what is the appropriate value for 𝑦 

that makes the equation true? Plot this point on the graph paper.  

 

What vertical shift does your answer here represent compared to your answer to part a)? 

 

c) Draw in the line that passes through these two points you found in parts a) and b).  

This line is the graph of 𝑦 = 5𝑥 + 3.   

 

d) What is the slope of the line? Through which number does the line pass on the vertical axis? 
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Practice 82.9 Repeat the previous question for the line with equation  𝑦 = −2𝑥 +4.   

 

 

 

 

Practice 82.10 Consider the equation of a line 𝑦 = 𝑚𝑥 + 𝑏 where 𝑚 and 𝑏 are fixed numbers.  

 

a) Show that the point (0, 𝑏) is on the line. 

 

b) Show that the point (1, 𝑚 + 𝑏) is on the line. 

 

c) What is the horizontal shift in going from (0, 𝑏) to (1, 𝑚 + 𝑏)? What is the vertical shift? 

 

d) What is the slope of the line? 

 

e) Through which number on the vertical axis does the graph of 𝑦 = 𝑚𝑥 + 𝑏 pass? 
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We’ve just learned that for an equation of a line presented in standard form, 

𝑦 = 𝑚𝑥 + 𝑏 

we have  

𝒎 corresponds the slope of the line 

𝒃 is the number at which the line crosses the vertical axis (the 𝒚-axis) 

 

Practice 82.11  

a) Give an example of a line that has an equation that cannot be rewritten in standard form. 

b) A horizontal line passes through the point (7,8). Write an equation for that line that is in 

standard form. 

 

Let’s bring in all the school jargon. There is a lot of if!   

 

Recall that schoolbooks have students draw graphs with the horizontal axis labeled 𝑥, the vertical axis 

labeled 𝑦, which means that equations are always presented with the letters 𝑥 and 𝑦 as the unknowns.  

 

 

The horizontal axis is thus called the 𝒙-axis and the vertical one the 𝒚-axis.  

 

Labeling the axes in this order gives the sense that 𝑥 is the “control variable” and the that 𝑦 is the 

“response variable.”  This idea is reinforced by writing equations in standard form. 

𝑦 = something involving 𝑥 
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Such an equation feels as though it is saying “when given a value for 𝑥, here’s what you need to do to 

compute the matching value of 𝑦.” 

 

With this setup, schoolbooks tend to call 𝑥 the independent variable and 𝑦 the dependent variable (its 

value seems to depend what value is given to 𝑥). 

 

For a point (𝑎, 𝑏) plotted on the grid paper, the first coordinate 𝑎 is often called the 𝒙-coordinate of the 

point and the second coordinate 𝑏 the 𝒚-coordinate of the point.  

 

The set of all points that represent data making the given equation true is, of course, the graph of the 

equation. When given a picture of a line drawn on grid paper, to “find the equation of the line shown” 

means to find an equation whose graph matches the picture given.  

 

If the graph of an equation crosses the vertical axis, the 𝑦-axis, at some number 𝑏, then that number is 

called a 𝒚-intercept of the graph. People write: “(0, 𝑏) is a 𝑦-intercept” or “a 𝑦-intercept is 𝑦 = 𝑏” or 

just “a 𝑦-intercept is 𝑏.” 

 

If the graph crosses the horizontal axis, the 𝑥-axis, at some number 𝑎, then that number is called  

an 𝒙-intercept of the graph. People write: “(𝑎, 0) is an 𝑥-intercept” or “an 𝑥-intercept is 𝑥 = 𝑎” or just 

“an 𝑥-intercept is 𝑎.”  

 

Example: In this picture, the graph has 𝑥-intercepts −4 and 1, and 𝑦-intercepts −3, 2, and 6. 

The point with 𝑥-coordinate 4 and 𝑦-coordinate 3 is not on the graph.   
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Students are often taught a “quick” way to sketch the graph of a line.  

 

 Example: Sketch a graph of the line 𝑦 = 3𝑥 − 5. 

Answer: Thinking of this equation as  

𝑦 = 3𝑥 + (−5) 

we see we are dealing with a line of slope 3 and 𝑦-intercept −5. 

 

So, we know the line crosses the vertical axis at the number −5, and to each 1 step rightward, 

we need to step 3 units upwards to return to the line.  

 

We’re set to sketch!  
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On another note …  

 

I find the schoolbook insistence on always using the letters 𝑥 and 𝑦 for the names of the unknowns 

somewhat unnatural. 

 

Example: I can purchase one gumball for 10 cents, two for 20 cents, fifty for 500 cents (that is, 

for $5), seven thousand for 70,000 cents (that is, $700), and so on. There is no discount for 

purchasing large quantities of gumballs, alas. 

 

There is natural data to collect in this scenario: the number of gumballs I could purchase and the 

matching cost of that purchase. 

 

i) If I were to graph this data, why, philosophically, must the data lie on a straight line? 

 

ii) What is the slope of the line on which the data lies? 

iii) What are the intercepts of the line? 

 

iv) What is the equation of the line on which the data sits? 

 

Answer: I would personally like to call the number of gumballs purchased 𝑁 and 

the cost of that purchase 𝐶, but let’s follow schoolbook practice and use the 

letters 𝑥 and 𝑦, respectively, instead. (In this scenario, I am in control of the 

number of gumballs I purchase, so it does seem appropriate to view that as the 

control variable here.) 

 

i) and ii):  Let’s imagine shifting from one data point to another.  

 

If I were to purchase one more gumball, then the amount I pay increases 10 

cents.  

 

That is, each horizontal shift of 1 unit in the data induces a vertical shift of 10 

units. 

 

This is precisely our understanding of what makes a line straight. 

The data sits on a straight line of slope 10. 

 

iii) If I purchase 0 gumballs, I owe 0 cents. I added this data point to the table. 
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We can see that the line has 𝑥-intercept 0 and 𝑦-intercept 0. 

 

iv)  The standard form of a (non-vertical) line is  

 

𝑦 = 𝑚𝑥 + 𝑏 

with 𝑚 the slope of the line and 𝑏 its 𝑦-intercept. 

 

Thus, the equation of the line in this example is 𝑦 = 10𝑥 + 0,  

which can be rewritten:  

𝑦 = 10𝑥 

 

 

 

By the way, economists call the additional cost induced by purchasing just one more item the marginal 

cost in the scenario. This provides additional internet theory as to what the letter 𝑚 is used as the 

symbol for slope. 

 

Your turn: 

Practice 82.12: I can rent a jeep for $100 down and then $30 per day for each day of use.  

(Just to be clear, if I enter into this agreement, as soon as I sign, I pay $100. Even if I decide not 

to rent after all after this, that is, I rent the jeep for 0 days, it will still cost me $100.) 

 

There is natural data to collect in this scenario: the number of days I rent the jeep, and the cost 

of doing so. 

 

i) If I were to graph this data, why, philosophically, must the data lie on a straight line? 

 

ii) What is the slope of the line on which the data lies? 

 

iii) What is the equation of the line on which the data sits? 

 

iv) What are the intercepts of the line? (Are they relevant and meaningful for this scenario?) 
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MUSINGS 
 
Musing 82.13 In this section we looked for the equation of the line of slope 7 that passes through the 
point (4,6). 
 
We first wrote down this equation  

𝑦 − 6

𝑥 − 4
= 7 

but then settled on this equation  
 

𝑦 − 6 = 7(𝑥 − 4) 
 

Sketch a graph of each of the two equations. How do they differ? 
 
 
Musing 82.14 The point 𝐴 has coordinates (−4, 7) and the point 𝐵 coordinates (2, −5).  
What are the coordinates of the one-third of the way along the line segment that connects 𝐴 and 𝐵, 
closer to 𝐴 than it is to 𝐵? 
 

 

MECHANICS PRACTICE 
 
Practice 82.15 On grid paper draw an example of a line of … 
 
a) positive slope     b) negative slope    c) slope zero    d) slope 1      e) slope −1,000,000 
 
Practice 82.16 Consider the line with the equation 𝑦 − 6 = 7(𝑥 − 4). 
 
a) Is the point (5,11) on the line? 
b) Is the point (3, −1) on the line? 
c) What is the line’s 𝑥-intercept? 
d) What is the line’s 𝑦-intercept? 
e) What is the equation of the line in standard form? 
f) Is there a point on the line with 𝑥- and 𝑦- coordinates the same value? If so, what is that point? 
 
Practice 82.17 Find the equation of the line that passes through the points (−1, 2) and (4,6). 
 
Practice 82.18  A line has equation 𝑦 = −2𝑥 + 2. 
 
a) What is the slope of the line? 
b) What is the 𝑦-intercept of the line?  
c) Make a quick sketch of the graph of the line. 
d) What is the 𝑥-intercept of the line? 
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Practice 82.19 A line has equation 𝑦 − 5 = 3(𝑥 − 2). 
What is the slope of the line and what is a point on the line? 
 
 
Practice 82.20 Write down an equation for each of these lines. 
 

  
 

 
 
Practice 82.21 A line has 𝑥-intercept 5 and 𝑦-intercept −3. What is the equation of the line? 
 
 
Practice 82.22 A line of slope −3 passes through the points (2,5) and (4, 𝑘). What is the value of 𝑘? 
 
 
Practice 82.23 Does 2𝑥 − 3𝑦 = 6 represent the equation of a line?  
If so, what are the 𝑥- and 𝑦- intercepts of the line, and how does the graph of the line appear?    
 
[You can guess that the answer to the opening question is YES!] 
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Practice 82.24 I currently have $102 in my piggy bank, and starting today, the first of the month, I am 
going to spend $3 from it each day. 
 
So, day 1 starts with $102 in the bank, day 2 starts with $99 in the bank, day 3 with $96 in the bank, 
and so on. 
 
a) On which day will I first see $0 in the bank? 
 
b) There is natural data to collect in this scenario: (1,102), (2,99), (3,96), and so on.  
 
Why, philosophically, are these data points sure to lie on a line?  
What is the slope of that line?  
 
c) What are the two intercepts of that line? 
 
d) Find an equation for the line. 
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83. One Type of Equation for all Lines 
 

If a line has a slope 𝑚 and passes through a point (𝑝, 𝑞), then  

 

𝑦 − 𝑞 = 𝑚(𝑥 − 𝑝) 

is an equation whose graph matches the line.  

 

We’ve seen that we can rewrite such an equation into an 

equivalent “standard form” 

𝑦 = 𝑚𝑥 + 𝑏 

where 𝑚 is still the slope of the line and 𝑏 is the 𝑦-intercept  

of the line. 

 

 

Practice 83.1 Write the equation of the line of slope −1.2 that passes through the point 

(−3.4, 7.5) in standard form.    

 

Horizontal lines have slope 0: shifting one unit horizontally from a point on a horizontal line requires 

shifting zero units vertically to return to the line. 

 

Practice 83.2 Write the equation of the horizontal line through the point (−5, −3) in standard 

form.    
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But we cannot write the equation of a vertical line in standard form. 

 

Practice 83.3 Write the equation of the vertical line through the point (−5, −3). What prevents 

you from writing the equation in standard form? 

 

But people have noticed there is something in common to each type of equation we’ve just discussed: 

they can each be written in the form  

 

𝐴𝑥 + 𝐵𝑦 = 𝐶 

for some numbers 𝐴, 𝐵, and 𝐶. 

 

For example, the horizontal line of Problem 83.2 has equation 𝑦 = −3, which can be expressed as 

 

0 ∙ 𝑥 + 1 ∙ 𝑦 = −3 

 

 

The vertical line of Problem 83.3 has equation 𝑥 = −5, which can be expressed as  

 

1 ∙ 𝑥 + 0 ∙ 𝑦 = −5 

 

 

The line of Problem 83.1 has equation 𝑦 = −1.2𝑥 + 3.42, which can be expressed as  

 

1.2𝑥 + 1 ∙ 𝑦 = 3.42 
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Every line—horizontal, vertical, and diagonal— can be expressed via an equation of general form  

𝐴𝑥 + 𝐵𝑦 = 𝐶 

for some numbers 𝐴, 𝐵, and 𝐶. 

 

No fuss is needed to distinguish between vertical and non-vertical lines. 

 

 

Practice 83.4 Consider the line with equation given by 

−4𝑥 + 5𝑦 = 60 

a) What is the 𝑥-intercept of this line? What is its 𝑦-intercept? 

 

b) Sketch a graph of the line. 

 

c) What is the slope of the line? 

 

d) What is the equation of the line in standard form? 

 

 

When writing the equation of a line in general form 𝐴𝑥 + 𝐵𝑦 = 𝐶, people expect the numbers 𝐴 and 𝐵 

to not both be zero (but it is fine for 𝐶 to be zero). 

 

Practice 83.5  

a) Describe the graph of 0 ∙ 𝑥 + 0 ∙ 𝑦 = 6. 

b) Describe the graph of 0 ∙ 𝑥 + 0 ∙ 𝑦 = 0. 

c) Describe the graph of 𝑥 + 𝑦 = 0. 
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MUSINGS 
 
Musing 83.6 Consider the equation of a line given by  
 

𝑥 + 𝑦 = 1 
 
a) What are the two intercepts of this line?  
b) Sketch a graph of this line. 
 
Now …  
 

c) Sketch a graph of  
1

𝑥
+

1

𝑦
=

1

𝑥𝑦
. 

 
 
Musing 83.7 Consider the general equation 𝐴𝑥 + 𝐵𝑦 = 𝐶 for some numbers 𝐴, 𝐵, and 𝐶. 
 
a) If 𝐴 is zero and 𝐵 is non-zero, what can you say about the line? 
b) If, instead, 𝐵 is zero and 𝐴 is non-zero, what can you say about the line?  
c) What can you say about the line if both 𝐴 and 𝐵 are non-zero, but 𝐶 is zero? 
 
 
Musing 83.8   COMING FULL CIRCLE? 
 
We started this chapter wondering if straight lines actually exist, which then led us to enquire what 
we mean by “straight” in the first place!  
 
Have we come full circle?  
 
Could we now say that “a curve drawn in the plane is called a straight line if it matches the graph of 
an equation of the form 𝐴𝑥 + 𝐵𝑦 = 𝐶 for three numbers 𝐴, 𝐵, and 𝐶 with 𝐴 and 𝐵 not both zero” ? 
 
Do we now, finally, have a solid definition of “straight”? 
 
What do you think? 
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MECHANICS PRACTICE 
 

Practice 83.9 Rewrite each of the equations in general form. 
 
a) 𝑦 = 2𝑥 + 3 
b) 𝑥 = 9 
c) 𝑥 = 𝑦 − 1 
d) 𝑦 = 0 
e) 𝑦 − 7 = −2(𝑥 − 5) 
 
 
Practice 83.10 Consider the equation of a line given by 
 

𝑥

2
+

𝑦

3
= 1 

 
a) What are its two intercepts? 
b) Sketch a graph of the line. 
 
 
Practice 83.11  

Sketch a graph of the line with equation 
𝑥

𝑎
−

𝑦

𝑏
= 1 for 𝑎 and 𝑏 are each a positive number.  
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84. Parallel Lines 
 

In geometry class, one defines two straight lines drawn in an infinite plane to be parallel if they are sure 

to never meet.  

 

 
 

 

My question: How can we ever be sure if two lines fail to meet? Do we have to check infinitely far in 

each of two directions to make sure they never cross?   

That seems beyond human! 

But maybe with some algebra under our belts, we can make sense of parallelism without having to do 

conduct work for an infinite amount of time.   

 

To explore what it means for two lines not to meet, let’s make sure we understand what it means for 

when they do. 
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Practice 84.1 On the one grid below graph each of these two lines: 

i) the line of slope 2 through the origin:          𝑦 = 2𝑥 

ii) the line of slope 3 with 𝑦-intercept −2:      𝑦 = 3𝑥 − 2 

a) At which point do these two lines intersect? 

 

b) Give a value for 𝑥 and a value for 𝑦 that make the math sentences 𝑦 = 2𝑥 and 𝑦 = 3𝑥 − 2 

simultaneously true. 

 
 

If you conduct this exercise, you will see that the two lines intersect at the point (2,4). 

 

Thus (2,4) is a data point that makes the equation 𝑦 = 2𝑥 true since it lies on the graph of this 

equation, and,  simultaneously, makes the equation 𝑦 = 3𝑥 − 2 true  since it also lies on the graph of 

this second equation. 

 

We have that 𝑥 = 2 and 𝑦 = 4 are values that make both sentences true at the same time.  

Practice 84.2 Show that there is no pair of values, one for 𝑥 and one for 𝑦, that make these two 

equations simultaneously true. 

i)  𝑦 = 4𝑥 + 3 

ii) 𝑦 = 4𝑥 + 2 
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Actually, let me answer this question right now. 

 

Suppose there is a number 𝑝 for 𝑥 and a number 𝑞 for 𝑦 that makes each equation true. 

 

We have  

𝑞 = 2𝑝 + 3 

and  

𝑞 = 2𝑝 + 2 

 

Let’s add − 2𝑝 to both sides of each equation. 

 

𝑞 − 2𝑝 = 3 

𝑞 − 2𝑝 = 2 

 

Whatever “𝑞 − 2𝑝” is, it supposedly equals 3 and equals 2 at the same time. 

 

That is impossible! There can be no values 𝑝 and 𝑞 that make both equations true at the same 

time. 

 

We’ve just concluded that the two lines described in problem 84.2 cannot intesect.  

The lines must be parallel! 

 

Practice 84.3 Show that if two different lines have the same slope 𝑚, they must be parallel.  

 

Hint: Suppose the lines have equations 𝑦 = 𝑚𝑥 + 𝑏 and 𝑦 = 𝑚𝑥 + 𝑐, with 𝑏 different from 𝑐 

(otherwise, they would be the same line). Follow the approach above.  

 

 

Practice 84.4 Explain why two different vertical lines cannot intersect.  

 

Hint: What is the form of the equation for a vertical line? 

 

 

We have just established:  

 

If two different lines have the same slope, or are both vertical, then they are parallel. 
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Practice 84.5 Show that the lines given by these equations are parallel. 

 

𝑦 + 2 = −3(𝑥 + 1) 

3𝑥 + 𝑦 = 7 

  

Practice 84.6  Are the lines given by these two equations parallel? 

5𝑥 − 𝑦 = 10 

𝑦 = 5(𝑥 − 2) 

 

 

MUSINGS 
 
Musing 84.7 (TOUGH!)  
We showed that if two different lines have the same slope, they never meet and so must be parallel. 
 
Let’s now show that if two lines have different slopes, then they are sure to meet and so not be 
parallel.  Do this as follows: 
 

Consider lines with equations  
 

𝑦 = 𝑚𝑥 + 𝑏 
𝑦 = 𝑛𝑥 + 𝑐 

 
with slopes 𝑚 and 𝑛 different values.   
 
We can be sure that 𝑚 − 𝑛 is not zero. 
 

Show that setting 𝑥 to have value 
𝑐−𝑏

𝑚−𝑛
 and 𝑦 to have value 𝑐 − 𝑏 makes each equation true. 

 
   

This means that the two lines intersect at the point (
𝑐−𝑏

𝑚−𝑛
 , 𝑐 − 𝑏) and are thus not parallel. 
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Musing 84.8 Here’s a picture of a line of slope 𝑚: shifting one unit to the right horizontally requires a 
vertical shift of 𝑚 units to return to the line.  

 

 
 

 
Let’s now rotate the diagram 90° to give a picture of a line perpendicular to our original line.  
(I was a bit silly and rotated the letter 𝑚 and the digit 1 as well!)  

 
 

 
 

Geometry textbooks say that if a line has slope 𝑚, then a line perpendicular to it has slope −
1

𝑚
.  

Do you see that this is the case in the picture?  
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MECHANICS PRACTICE 
 

Practice 84.9 Do the lines given by the equations 𝑦 − 8 = 3 − 𝑥 and 𝑥 + 𝑦 = 10 meet at a point?   
 
Practice 84.10 Find a “simultaneous solution” to the equations: 
 

𝑥 = 𝑦 
 

𝑦 = 2𝑥 − 3 
  
(Can you guess what this question is asking?) 
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85. Solving Equations Simultaneously via Graphing 
 

Algebra books are chock full of problems of the following ilk.  

 

Example: Two rental car companies, Cars R Us and Drive-o-Rama, offer the following rates. 

Cars R Us:  Deposit of $100 and $30 for each day of rental. 

Drive-o-Rama:   Deposit of $200 and $30 for each day of rental. 

 

a) If you intend to rent a car for 7 days, which company is cheaper for you? 

b) If, on a later trip, you intend to rent a car for 14 days, which company is cheaper for you? 

 

c) Is there a “cross-over” point – a certain number of days where the total rental charge will be 

the same from each company? 

 

Answer: Let 𝐶 represent the total rental charge for renting a car from Cars R Us for 𝑛 days, and 

𝐷 the matching rental cost from Drive-o-Rama. 

 

We have  

𝐶 = 100 + 30𝑛 dollars 

𝐷 = 200 + 20𝑛 dollars 

(Do you agree? Make sure you really do! Do each of these formulas make sense for renting a car 

for 𝑛 = 0 days? For 𝑛 = 1 day? For 𝑛 = 2 days? ) 

 

a) For 𝑛 = 7 days of rental,  

𝐶 = 100 + 30 × 7 = 310 dollars 

𝐷 = 200 + 20 × 7 = 340 dollars 

Going with Cars R Us is a better deal. 

 

b) For 𝑛 = 14 days of rental,  

𝐶 = 100 + 30 × 14 = 520 dollars 

𝐷 = 200 + 20 × 14 = 480 dollars 

Going with Drive-o-Rama is a better deal. 
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c) If you graph these two equations (they are both equations of lines) we see something 

interesting. 

 

(I used an online graphing tool this time, and then labeled the axes appropriately.)  

 

 

 

 

 The two lines seem to meet at the point (10,400).  

 

 To check, for day 𝑛 = 10 we have  

𝐶 = 100 + 30 × 10 = 400 dollars 

𝐷 = 200 + 20 × 10 = 400 dollars 

 

Yep, 10 days of rentals is a cross-over point: If renting for less than ten days, go with Cars R Us, 

they are cheaper. If renting for more than ten days, going with Drive-o-Rama is cheaper. If 

renting for exactly ten days, flip a coin—the cost will be the same for the two. 
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Practice 85.1 I am looking for two numbers that sum to 100 with one number double the other. 

(I don’t know why, but I am.) 

 

I decided to call the two numbers 𝑎 and 𝑏 and write down two equations I want to be true 

about these numbers: 

𝑎 + 𝑏 = 100 

𝑏 = 2𝑎 

I then used technology to graph each of these equations. 

 

Is the graph revealing the two numbers I seek? 
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Here's the sort of test question that gives math a bad name. (Who ever speaks this way?)  

 

Example:  In a certain household there are some humans and some cats.  

Each human has two legs and two ears.  

Each cat has four legs and two ears. 

Each human has one nose, as does each cat.  

 

There are a total of 20 ears and 32 legs in the household. 

 

How many noses are there in total? How many of those are cat noses? 

 

Let me answer this the common-sense way. 

 

Each being has two ears and one nose. That there are 20 ears in the household then tells me 

that there are 10 beings in the household, and so 10 noses altogether.  

 

Each being has two legs emanating from its hips. With a total of 10 beings, this accounts for 20 

legs. The extra 12 legs must be front legs of cats and so we conclude that there are 6 cats. 

 

Answer: There are 10 noses altogether:  6 are cat noses and 4 are human noses. 

 

 

Practice 85.2 Let’s now answer this questions the schoolbook algebra way. 

 

Let ℎ represent the number of humans in the household and 𝑐 the number of cats. 

 

a) Write an equation that represents the statement “There are a total of 20 ears in the 

household.” 

b)   Write an equation that represents the statement “There are a total of 32 legs in the 

household.” 

 

c) Use technology (or by hand) graph both of these equations on grid paper.  

 

d) Does your picture reveal the solution to the puzzle? 
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MUSINGS 
 
Musing 85.3 Are there two numbers that sum to 100 with one number being the square of the other? 
 
  

 

MECHANICS PRACTICE 
 

Practice 85.4 Following the opening example of this section … 
 
A third car rental company, Just Drive, has opened up business. It charges $40 a day for rental with no 
deposit.  
 
a) You intend to rent a car for 7 days. Which company, Cars R Us, Drive-o-Rama, or Just Drive offers 
the best deal for you?   
 
b) You next intend to rent a car for 14 days. Which company, Cars R Us, Drive-o-Rama, or Just Drive 
offers the best deal for you?   
 
c) Write equations that give the cost incurred for renting a car for 𝑛 days from each of the three 
companies and graph each of the equations on the same grid paper. What do you notice? 
 
 
Practice 85.5  Can you think of two numbers that sum to 20 and differ by 13? 
 
Even if you can, also solve this question by writing down two relevant equations, graphing on the 
same grid paper, and examining what the picture reveals for you. 
 
 
Practice 85.6  Priyanka is walking along a straight road at a constant rate of 3.5 miles per hour. 
Gordon is 1 mile ahead of her along the road and is walking at a constant rate of 3 miles per hour.   
 
Will Priyanka catch up to Gordon? If so, how do you know and how long will it take her to catch up?  
 
 
a) Is there a “common sense” way to think through and answer this problem? 
b) The schoolbook approach would want you to write two relevant equations, graph them, and 
determine the answer to the question from the graph. Conduct that approach too!   
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Practice 85.7 Yesterday, Albert stuffed and addressed 1,200 envelopes. He’ll continue the job today 
at a constant rate of attending to 120 envelopes per hour, nonstop. 
 
Bilbert is new to the job today. He hasn’t yet stuffed and addressed any envelopes but will work at 
this job today at double the rate Albert will, also nonstop. 
 
Is there a “crossover point,” a moment when Bilbert will have stuffed and addressed just as many 
envelopes as Albert up to that point? If so, when? 
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86. Solving Equations Simultaneously without Graphing  
 
An equation with two unknowns is called linear if its graph is a straight line.  

 

For example, any equation that can be written or rewritten in the form 𝐴𝑥 + 𝐵𝑦 = 𝐶 (with 𝑥 and 𝑦 the 

unknowns) is linear.  

 

But people actually use the word linear for any equation that can be written in this form, even if there 

are more than two unknowns. For example,  

2𝑥 + 6𝑦 − 8𝑧 = 19 

and 

76𝑎 −
1

2
𝑏 + 44𝑐 + 98𝑑 − 0.09𝑒 + 11𝑓 + √2𝑔 = 119

3

4
 

are linear equations. (Good luck making sense of what it means to graph these!)   

We’ve used graphing to find simultaneous solutions to pairs of linear equations in two unknowns. That 

was grand and good, but it is tedious: it’s hard to draw careful graphs, especially if no technology is close 

at hand. 

 

Fortunately, there is an easier way to look for simultaneous solutions to sets of linear equations.  

 

Let’s start with a purely visual approach. 

 

Try this problem on your own before turning the page. 

 

Example: We have $x dollar bills and $y dollar bills and the following information about them. 

 

Just staring at the picture … 

i) What’s the value of x + y? 

ii) What then is the value of x? 

iii) What then is the value of y? 
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Here’s what I saw.  

 

First, 𝑥 + 𝑦 must by 7. 

 

Then, knowing that, I saw that 𝑥 must be 5. 

 

And that then forces 𝑦 to be 2. 

 

I think it is kinda cool we just solve a system of two linear equation in two unknowns as though it was a 

logic puzzle. 

3𝑥 + 2𝑦 = 19 

2𝑥 + 𝑦 = 12 

 

 Practice 86.1 Graph these two lines together. Do they indeed intersect at the point (5,2)? 

 

 

Let’s now have some fun honing our logical and visual thinking skills to get on top of simultaneous linear 

equations and make sense of the algebra that this visual thinking suggests. 

 

In what follows, the values of 𝑥-dollar and 𝑦-dollar bills will vary from problem to problem. 
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Practice 86.2 A certain country has six different types of bills. For some reason citizens call them 

𝑎, 𝑏, 𝑐, 𝑥, 𝑦, and 𝑧 dollar bills and mark them with just those letters, not by the number of 

dollars each letter represents. (Weird!)   

 

a) Here are two pieces of information. Can you deduce any useful about this nation’s currency?  

 

 

 

b) Here’s an additional piece of information. What can you deduce now? 

 

 

Practice 86.3 What must be the value of ℎ if these two linear equations are simultaneously 

true? 

2𝑎 + 5𝑏 + 18𝑐 + 7𝑑 + 𝑒 + 92𝑓 + 100𝑔 + 86ℎ = 987 

2𝑎 + 5𝑏 + 18𝑐 + 7𝑑 + 𝑒 + 92𝑓 + 100𝑔 + 87ℎ = 997 
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Practice 86.4 What must be the value of 𝑤 if these two linear equations are simultaneously 

true? 

98𝑝 + 4𝑤 + 8𝑧 = 17 

98𝑝 + 9𝑤 + 8𝑧 = 57 

 

Schoolbooks usually have students work only with equations containing two unknowns.  

 

Practice 86.5 Following the currency of the previous page, find the value of 𝑥 and 𝑦 given these 

two pieces of information. 

 
 

 

We can present this example in a schoolbook way. 

 

 Example: Kindly solve this system of linear equations 

3𝑥 + 7𝑦 = 165 

3𝑥 + 9𝑦 = 195 

 

Your answer to Problem 86.5 should show that 𝑦 = 15 and 𝑥 = 20. 

 

Let’s keep going. 
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Practice 86.6 We don’t yet know the values of 𝑎 and  𝑏 in our currency example.  

Here’s two pieces of information about them.  

 

2𝑎 + 7𝑏 = 221 

12𝑎 + 7𝑏 = 1221 

 

a) Can you imagine the picture that goes with each of these equations? 

b) What is the value of 𝑎 and what is the value of 𝑏? 

 

We’re using the following idea about equality. 

 

 
If we have equality between two quantities,  

and if we increase each by a certain amount and equality remains true,  
then it must be that the increments match. 

 

 
 

 

For instance, in Problem 86.6, we have the equality  

 

2𝑎 + 7𝑏 = 221 

 

And we are told that increasing the left side by 10𝑎  

and the right side by 1000 again yields equality: 

 

12𝑎 + 7𝑏 = 1221 

We deduce then that 10𝑎 = 1000 and so 𝑎 = 10. (And knowing 𝑎 represents the number 100, we then 

see that 200 + 7𝑏 = 221, giving that 𝑏 must be 3.) 
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This new observation about equality makes sense with our dollar bill thinking.   

 

 

 

But we can also deduce this observation as a logical consequence of what we already believe about 

equality as outlined in Section 76. (Seeing this removes us from relying on a single real-world model to 

“explain” mathematics. As we have learned, mathematics is sufficiently robust to justify itself!) 

 

Explaining the Observation Mathematically (if you are curious): 

If we have an equality 𝐴 = 𝐵, then we know from Section 76 that for any number 𝑎, the equality  

𝐴 + 𝑎 = 𝐵 + 𝑎 

holds too. 

But we are being told that 𝐴 + 𝑎 = 𝐵 + 𝑏 is true as well, for some number 𝑏.  

 

Hmm. 

 

So, 𝐴 + 𝑎 equals 𝐵 + 𝑎 and it also equals 𝐵 + 𝑏. We must have 

 

𝐵 + 𝑎 = 𝐵 + 𝑏 

 

Adding −𝐵 to each side of this equality gives us 

𝑎 = 𝑏 
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Practice 86.7 When Aparna was asked to solve this system of equations,  
 

3𝑥 + 𝑦 = 5 
3𝑥 + 2𝑦 = 7 

 
she immediately deduced that 𝑦 must be 2. (Do you agree?) 
 
Then she looked at the first equation and deduced that 𝑥 must have the value 1 
(do you again agree?) yielding 𝑥 = 1 and 𝑦 = 2 being the values that make the two equations 
simultaneously true. 
 
But what if she looked at the second equation instead to find the appropriate value of 𝑥? Would 
she still have deduced that 𝑥 is required to have the value 1? 
 

 
This problem brings up an important point: 
 

Suppose we are given a system of two linear equations in two unknowns, and we seek a 
simultaneous solution to them.  
 
Our work on graphing showed that a simultaneous solution corresponds to the coordinates of 
the point where the graphs of the lines intersect. (So, we better hope we don’t have two parallel 
lines!) 

 
Thus, if we know one of the coordinates of this special point, then it doesn’t matter which of the 
two lines we work with to find the other coordinate: that point of intersection lies on both lines, 
so just pick whichever one you feel like working with! You’ll get the coordinates of that one 
point of intersection either way.   
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Okay. We’re now set to solve all the usual schoolbook examples thrown students’ ways. 
 
Try this series of problems. You’ll still need your wits—but that’s what actually makes these (otherwise 
tedious) problems fun! 

 

Practice 86.8 Please find values for 𝑥 and 𝑦 that make these two linear equations 
simultaneously true.   
 

3𝑥 + 5𝑦 = 5 
3𝑥 + 10𝑦 = 25 

 
 

Practice 86.9: Solve the following system of equations.  
 

3𝑥 + 5𝑦 = 60 
3𝑥 − 2𝑦 = 18 

 
 
 
Practice 86.10: Solve the following system of equations.  

 
𝑥 + 𝑦 = 3 
3𝑥 + 4𝑦 = 11 

 
Remember: If there is something in life you want, make it happen! (And deal with consequences.) 
 
Would you like a “3𝑥" to be part of the first equation? If so, make it happen!  

 
 

 
Practice 86.11: Kindly solve the following system of equations.  
 

𝑥 + 𝑦 = 3 
3𝑥 + 4𝑦 = 8 

 
 
 

Practice 86.12: Please solve the following system of equations. 
 

𝑎 + 4𝑏 = −29 
2𝑎 − 3𝑏 = 8 

 
 

 



 
 
 

165 
 

 

 
Practice 86.13: Consider the following system of equations.  
 

3𝑥 − 4𝑦 = 13 
5𝑥 + 2𝑦 = 13 

  
a) To solve the system, try by multiplying the first equation through by 5 and the second 

equation through by 3. Can you see what that does for us? 
 

b) Solve the system again but by doing something enlightened that makes the “𝑦-terms” in 
each equation match.   

 
 
 
 

 Practice 86.14: Kindly solve the following system of equations. 

5𝑚 − 0.4𝑛 = 1.0 
0.5𝑚 + 0.1𝑛 = 1.5 

 
 

Practice 86.15: I most humbly invite you to solve the following system of equations. 

𝑥 = 3𝑦 − 2 
𝑦 = 5 − 4𝑥 

 
 

Practice 86.16: Please find a common solution to  

6𝑥 + 2𝑦 = 5 
3𝑥 + 𝑦 = 0 

 
 
 
 

Practice 86.17: Is it possible for two linear equations (in two unknowns) to have two or more 

simultaneous solutions?   
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Allow me to close a logical gap.  

 

We’ve been playing with systems of two linear equations in two unknowns. For instance:  

 

3𝑥 + 2𝑦 = 21 

𝑥 + 𝑦 = 8 

 

As long as the two lines represented by the equations are not parallel, we know that the two lines have 

a unique point of intersection: an 𝑥 value and a 𝑦 value that make each equation true simultaneously. 

 

To find that point of intersection, we’ve been conducting logical maneuvers of the following type:  

 If we are working with numbers that make the two equations true,  

 then this must also be true … and this must also be true  .. and this must also be true … 

until we get to statements that tell us a value for x that must be true and a value for 𝑦 that must be true.  

 

But this is a whole sequence of logical ifs.  

Are our final conclusions sure to be actually true?  

 

The answer is yes. 

 

And that is because we do happen to know a priori that there is a solution to be had (assuming the lines 

are not parallel) and there only one solution to be had, so there will be no mix-up of which 𝑥 values for 

truth match up with which 𝑦 values.  

To be painstakingly clear, the logic we are following in our work is this: 

 

 The point of intersection of the two lines given by the equations  

 

3𝑥 + 2𝑦 = 21 

𝑥 + 𝑦 = 8 

 gives 𝑥 and 𝑦 values that make both of these equations true. 

 Which means they make both of these equations too. 

3𝑥 + 2𝑦 = 21 

3𝑥 + 3𝑦 = 24 

Which means they also make the statement 𝑦 = 3 true.  
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Which means they also make  

3𝑥 + 6 = 21 

true. 

 

Which means they also make 𝑥 = 5 a true statement.  

 

Well, if the point of intersection makes the sentences 

𝑥 = 5 

𝑦 = 3 

both true, then it must actually be the point (5,3)!  

 

Of course, no one writes out all the words in this reasoning: it is assumed understood. (But, because it is 

never actually written out, I am not sure it properly is understood!) 

 

 

Also, notice I’ve been presenting all our pairs of linear equations in the form: 

 

𝑎𝑥 + 𝑏𝑦 = 𝑐 

𝑑𝑥 + 𝑒𝑦 = 𝑓 

 

Then we can multiple one or both of the equations through by numbers to make either the “𝑥 terms” or 

the “𝑦 terms” match.  

 

Of course, one can always rewrite a given pair of linear equations to follow this structure. 

 

Practice 86.18 Solve the following system of two linear equations. 

 

𝑦 + 𝑥 + 𝑥 = 4 − 𝑦 + 𝑥 

3 − 𝑥 = 8 − 𝑦 
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“Real-World” Problems 
 
Algebra textbooks often try to give the impression that all aspects of algebra is real-world relevant and is 
actively being used—just as presented—by engineers, actuaries, chemists, sociologists, and the like. 
And, moreover, when comparing rental car plans, or doing carpentry, or trying to count the number of 
nickels and dimes in your piggy bank, you too might well set up a system of two linear equations to 
solve.  
 
You, no doubt, see through this. 
 
For instance, here is a textbook “real world” example.  
 

Example: A carpenter cut a ten-foot-long plank into two pieces, one two feet longer than the 
other. How long were the two pieces? 
 
Answer: Call the length of the two pieces 𝑎 feet and 𝑏 feet. Then we have 
 

𝑎 + 𝑏 = 10 feet 
with 

𝑏 = 𝑎 + 2 
 
We need to solve this system  
 

𝑎 + 𝑏 = 10 
−𝑎 + 𝑏 = 2 
 

A decrease of 2𝑎 on the left matches a decrease of 8 on the right.  
Consequently, 𝑎 = 4 feet and so 𝑏 = 6 feet. 

 
 
But what carpenter expresses a problem this way? When is a carpenter in a position of needing one 
board two feet longer than the other with their combined length previously specified?  
 
Despite the hokey-ness of the these “real world” examples, I will always advocate for practicing thinking, 
engaging in common sense reasoning, and exercising mathematics. I cannot predict how such 
intellectual work will end up being relevant to you and your life’s doing and work, but having intellectual 
techniques and prowess under your belt just can’t be a bad thing.  
 
Allow me to now present some typical schoolbook applications of “systems of equations.” But please 
understand, I am not trying to convince you that these examples demonstrate practical importance of 
this work. (But I hope they do illustrate the power of general intellectual might.)  
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Practice 86.19 Joi has 2,400 coins on a table. Some are pennies (1 cent coins) and the rest of 
nickels (5 cent coins).  
 
Joi doesn’t know how many coins of each type she has, but she somehow knows that their total 
value is $58.80. 
 
She is curious about the total value of the pennies alone. 
 
Rather than count pennies, she writes the following on a napkin. 
 

Let 𝑝 be the number of pennies and 𝑛 the number of nickels on the table.  
We have 

𝑝 + 𝑛 = 2400 
𝑝 + 5𝑛 = 5880 

 

Continue Joi’s work and determine the total value of the pennies please.  
 
 

 

Here’s a “common sense” way to think though Joi’s problem. 
 
 

If all 2,400 of Joi’s coins were pennies, their total value would be $24.  
But she has a total value of total value of $58.80, which is $34.80 more.  
 
This extra value must be coming from the nickels present, each contributing an extra 4 cents 
compared to each penny. So, the number of nickels must be 
 

3480 ÷ 4 = 870 
This means that there are 
 

2400 − 870 = 1530 
pennies making $15.30 in cash.  

 
 

Did you get this answer too for Problem 86.19?  
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Practice 86.20 Two pieces of Mouthstick gum and five pieces of Chew-a-Lot gum together cost 

40 cents, whereas eight pieces of MouthStick gum and three pieces of Chew-a-Lot gum together 

cost 58 cents.  

 

For some reason you never looked at the actual prices of each piece of gum. 

 

What is the cost of one piece of MouthStick gum? 

What is the cost of one piece of Chew-a-Lot gum? 

 

Okay, here is an application that might actually be used in the real-world. 

 

Example: In a chemistry lab there are two acid solutions: Container A of 20% acid solution and 

Container B of 30% acid solution.  

 

You need a supply of 24% acid solution. 

 

What proportion of the two solutions should you combine to create this? 

 

(I am not a chemist. Forgive me if my setup and wording here is not quite right—but I am not far off in 

how algebra textbooks usually present such problems.) 

 

Solution (Ha!): The question doesn’t specify how much of this 24% acid solution you need, but 

let’s pick an amount of 100 milliliters, say. (Choosing the number “100” will likely make 

expressing proportions as easier.) 

 

Let 𝑎 represent the number of milliliters to take from Container A and 𝑏 the number of milliliters 

from Container B.  

 

We need 

𝑎 + 𝑏 = 100 

0.20 × 𝑎 + 0.30 × 𝑏 = 0.24 × 100 

(Do you understand the second statement? It’s about the total among of acid you have present 

in the solutions.) 

Let’s multiply the second equation through by 10. 

𝑎 + 𝑏 = 100 

2𝑎 + 3𝑏 = 240 
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Let’s multiply the first equation through by 2 to make the “𝑎 terms” match. 

 

2𝑎 + 2𝑏 = 200 

2𝑎 + 3𝑏 = 240 

  

Now we see that we need 𝑏 = 40 milliliters of liquid from Container B and consequently 60 

milliliters of liquid from container A. 

Thus, we need to combine liquids from containers A and B in a 60: 40, that is, 3:2, ratio.  

(Three parts from Container A and two parts from Container B.) 

 

 

Practice 86.21: In the same chemistry lab with Container A of 20% acid solution and Container B 

of 30% acid solution, I now need  

 

a) a supply of 25% acid solution 

b) a supply of 29% acid solution 

c) a supply of 33
1

3
% acid solution 

 

Find the proportions of the two acid solutions needed to create each of these supplies.  

 

Reflection:  

What does common sense tell you is the answer to part a)?  

Does your mathematics show this too? 

 

What does common sense tell you is the answer to part c)?  

Does your mathematics show this too? 
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Practice 86.22: A dinner-cruise boat travels along a river.  

It travels 6 miles downstream in one hour and then returns upstream in one-and-a-half hours. 

 

What is the speed of the river current in miles per hour, and what would be the speed of the 

boat in still water? 

 

Actually, problem 86.22 might be a “real-world” problem for curious diners. They are not privy to the 

speed of the boat set by the captain, nor do they know the speed of the current. But they do know how 

long they traveled in each direction and perhaps how far downstream they went.    

 

Practice 86.23: Ibrahim invested money into two accounts: some in one account that earned 9% 

interest on his deposit by the end of the year and one that earned him 12% interest by the end 

of the year.  

 

He deposited a total of $10,000 at the beginning of the year and now has $11,200. 

 

He cannot recall how much he put into each account and all records have been lost. 

(You know how that goes.) 

 

Please help him out. 

 

 

Practice 86.24: Anni-Frid found some $2 and $5 bills.  

She counted 28 bills in all adding to $116 in cash but was incapable of counting the number of 

$2 bills alone and the number of $5 bills alone. 

 

How many bills of each type did she find? 

 

 

Practice 86.25: Concert organizers sold two types of tickets: student tickets at $12 each and 

general admission tickets at $850 each. 

 

They lost track of how many tickets of each type sold, but they do know they sold a total of 101 

tickets to bring in a total of $2,888. 

 

Can you help them out? 

 

(Surely the organizers would notice how many $850 tickets they managed to sell!) 
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MUSINGS 
 
Musing 86.26 Apart from the basic properties of equality we outlined back in Section 76, we have 
been using another belief of equality without mention. It’s this: 
 

If a quantity 𝐴 equals a quantity 𝐵 and it also equals a quantity 𝐶, then it must be that 𝐵 and 
𝐶 are equal. 
 

That is, if  
𝐴 = 𝐵 and 𝐴 = 𝐶 

then  
𝐵 = 𝐶 

 
We’ve used this idea multiple times throughout these notes (and in this section during our brief 
discussion of equality – can you spot its use?) 
 
a) Do you think this idea seems reasonable to believe? 
b) Do you think I should I have explicitly mentioned this additional belief of equality earlier on?   
 

 

 

 

MECHANICS PRACTICE 
 
Practice 86.27 This was an exercise-rich section! Did you try all 25 problems that appeared?   
(I won’t suggest you keep doing more!) 
 
Practice 86.28 Actually, a great way to test if you really “got” an idea is to see if you can create your 
own exercises on the topic for others to try. 
 
a) Write variations of problems 86.19 to 86.25 that are manageable to solve and have answers 
involving numbers that are not too icky. 
 
b) Create a system of two linear equations in two unknowns with no solutions. 
 
c) Also create a system of two linear equations in two unknowns with infinitely many solutions. 
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87. OPTIONAL ASIDE: The Expected Schoolbook Approach(es) 
 

Our algebraic approach to solving systems two linear equations in two unknowns is probably surprising 

to most textbook authors.  

  

Example: Kindly find a common solution to this system of equations: 

3𝑚 − 2𝑞 = 10 

5𝑚 − 2𝑞 = 14 

 

Answer: This system is set up for us to readily compare increases. 

 

 

 We have that 2𝑚 matches 4 and so we need 𝑚 = 2 for the two equations to be true.  

 

 Looking then at the first equation, we now see it reads as 

 

6 − 2𝑞 = 10 

 Applying the usual techniques of algebra gives 

6 = 10 + 2𝑞 

−4 = 2𝑞 

−2 = 𝑞 

 

So, we need 𝑚 = 2 and 𝑞 = −2 for the two equations to be simultaneously true.  
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Practice 87.1 Here’s a start to finding the common solution to: 

3𝑝 − 2𝑞 = 22 

4𝑝 + 5𝑞 = 37 

 

1. Make the “𝑝 terms” the same by multiplying the first equation through by 4 and the second 

equation through by 3. 

12𝑝 − 8𝑞 = 88 

12𝑝 + 15𝑞 = 111 

 2. Now compare increases. 

 

 
 

Please complete the work.  

 

 

 

 

Rather than “compare increases,” algebra books typically have students “subtract equations.”  

 

Let me explain what is meant by this.  
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The principle we’ve been following is that if equality holds, then “increases must match.” 

 

 

But people say that it looks like we took our two equations and subtracted one from the other to get to 

this conclusion.  

 

 

Sure! Subtraction is the process of making increments explicit. So, the thinking of subtracting equations 

as suggested is a valid move (and is just a rephrasing of our approach). We can adopt this practice 

directly too if we want. 

 

 

Example Revisited: Kindly find a common solution to this system of equations: 

3𝑚 − 2𝑞 = 10 

5𝑚 − 2𝑞 = 14 

 Answer: Subtracting the first equation from the second gives 

2𝑚 = 4 

 

 So, 𝑚 = 2 and, as before, 𝑞 = −2. 

 

 

 Practice 87.2 Show how subtraction in Problem 87.1 yields 23𝑞 = 23. 
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Since subtraction is really addition of the opposite, we can interpret this subtraction practice as first 

multiplying one equation through by −1 and then adding two equations.  

 

 

 

And sometimes we might want to work with the addition of two equations right off the bat. 

For example, for this system of two equations 

3𝑥 − 𝑦 = 7 

2𝑥 + 𝑦 = 8 

adding the two together gives  

5𝑥 = 15 

 

yielding that we need 𝑥 = 3 and consequently 𝑦 = 2 for a simultaneous solution.  

 

 

This action is just the same subtraction process, if we first multiply the second equation through by −1 

to make the “𝑦-terms” match. 

 

 
 

So, feel free to add to equations or subtract two equations. Both approaches are just our “increments 

must match” thinking in disguise. 
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Practice 87.3 Practice these subtraction and addition techniques to solve the following systems 

of equations.  

a)  

4𝑥 + 7𝑦 = 16 

4𝑥 − 𝑦 = 0 

 b) 

4𝑥 + 7𝑦 = 16 

4𝑥 − 7𝑦 = 64 

c) 

𝑚 − 0.2𝑛 = −5 

4𝑚 − 𝑛 = 10 

d) 

3𝑟 − 2𝑠 = 6 

2𝑟 + 3𝑠 = −4 
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The Substitution Method 

 

Consider the following system of equations  

𝑦 = −2𝑥 + 1 

𝑦 = 3𝑥 − 1 

 

Since the 𝑦-terms are matching, it makes sense to subtract the two equations to obtain 

 

0 = −5𝑥 + 2 

 

and we can work from here. 

 

 

 

But we could follow the reasoning outlined in Musing 86.26: 

 

If we have 𝑥 and 𝑦 values that makes the equations true, then it looks like the number for 𝑦 

equals two different values. 

𝑦 = −2𝑥 + 1 

𝑦 = 3𝑥 − 1 

It must be the case then that  

−2𝑥 + 1 = 3𝑥 + 1 

 

This can be rewritten as 5𝑥 = 2 and we can go from there. 

 

Schoolbooks call this approach solving by substitution. It looks like we took one stated value of 𝑦 from 

one equation and replaced the appearance of 𝑦 in the second equation with that stated value.  

 

 

Practice 87.4 Solve this system of equations by the substitution method. 

 

𝑦 = 100𝑥 

𝑦 = 99𝑥 + 3000 
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Actually, schoolbooks are usually much bolder with this substitution approach.  

 

Consider the following system of equations 

 

𝑦 = 5𝑥 − 1 

3𝑦 − 13𝑥 = 9 

If there are 𝑥 and 𝑦 values that make the equations simultaneously true, then the first equation is telling 

us that the value of 𝑦 matches the value of  5𝑥 − 1. So, we might as well use that for the value of 𝑦 in 

the second equation. We must have:   

 

3(5𝑥 − 1) − 13𝑥 = 9 

 

Now we can work with this equation to see that 𝑥 must have value 6 and consequenctly 𝑦 has value 

5 × 6 − 1 = 29. (Check this!) 

 

This reasoning feels okay. But does the math justify what we just did?  

 

It does. And here’s how.  

 

We can rewrite the second equation using the standard techniques of algebra 

3𝑦 − 13𝑥 = 9 

3𝑦 − 13𝑥 + 13𝑥 = 9 + 13𝑥 

3𝑥 = 13𝑥 + 9 

1

3
× 3𝑦 =

1

3
× (13𝑥 + 9) 

𝑦 =
13

3
𝑥 + 3 

So, our system of equations can alternative be presented as  

 

𝑦 = 5𝑥 − 1 

𝑦 =
13

3
𝑥 + 3 
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The standard substitution technique then gives     

5𝑥 − 1 =
13

3
𝑥 + 3  

Now, let’s undo our algebra steps on this. (We added 13𝑥 and multiplied by 
1

3
. Backwards, we multiply 

by 3 and subtract 13𝑥). 

 

5𝑥 − 1 =
13

3
𝑥 + 3  

3 × (5𝑥 − 1) = 3 × (
13

3
𝑥 + 3)  

3(5𝑥 − 1) = 13𝑥 + 9 

3(5𝑥 − 1) − 13𝑥 = 13𝑥 + 9 − 13𝑥 

3(5𝑥 − 1) − 13𝑥 = 9 

 

which does indeed match writing “5𝑥 − 1" for 𝑦 directly into our second equation 3𝑦 − 13𝑥 = 9. 

 

Phew! 

 

Here’s the general schoolbook substitution method: 

 

To solve a system of equations of the form 
 

 𝑦 = 𝑚𝑥 + 𝑏 
 
𝐴𝑥 + 𝐵𝑦 = 𝐶 

 
work with 
 

𝐴𝑥 + 𝐵(𝑚𝑥 + 𝑏) = 𝐶 
 
and go from there. 
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Practice 87.5 Solve these systems of equations any way you like (and that includes via graphing, 

or better, finding some online computer algebra system to do everything for you).   

a)  

4𝑥 + 7𝑦 = 16 

𝑦 = 2𝑥 

 b) 

𝑦 = −2𝑥 + 1 

𝑦 = 𝑥 − 11 

 c) 

𝑥 + 𝑥 + 𝑦 + 𝑥 + 𝑦 + 𝑥 = −𝑥 − 𝑥 − 𝑦 

𝑦 = 𝑥 

d) 

𝑦 = 5 − 7𝑥 

2𝑦 = 8 − 7𝑥 
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MUSINGS 
 
Musing 87.6  
a) Create a system of two linear equations in the unknows 𝑥 and 𝑦 whose solution  
is 𝑥 = −2  and 𝑦 = 1. 
 
b) When Sunil answered this question he gave the system 
 

𝑥 = −2 
𝑦 = 1 

 
Do you agree that this is a system of two linear equations? Does the system have solution 𝑥 = −2 
and 𝑦 = 1? 
 
c) Solve Sunil’s system by graphing, Does the intersection point (−2,1) appear? (It should!)  
 

 

 

 

 

 

MECHANICS PRACTICE 
 
Practice 87.7   Solve the following system of equations 
 

3𝑥 − 2𝑦 + 𝑧 = 48 
3𝑥 − 2𝑦 + 2𝑧 = 61 

𝑦 = 23 − 𝑥 − 𝑧 
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Chapter 11 

Proportional Reasoning  
(Figuring Out when Common Sense Does the Trick) 

 
  



 
 
 

186 
 

 

  



 
 
 

187 
 

 

88. Just Do It! 
 
The middle-school curriculum presents a line of thinking called “proportional reasoning”- an idea that 

manifests itself in a large variety of situations and scenarios.  

 

It is the practice of mathematics to recognize the same underlying structure in multiple scenarios, and 

thus be able to “see through” the scenarios with expert prowess. Studying proportional reasoning 

provides an excellent opportunity to practice just this.   

 

But the typical school presentation of this topic, in my opinion, fails to keep this message clear and often 

gets lost in clutter and loses sight of the common-sense thinking behind it all.  

 

The underlying logic of proportional reasoning is actually quite natural and intuitive—one doesn’t even 

need to know what “proportional reasoning” is in order to engage in it.  

 

To illustrate what I mean, try this proportional reasoning problem right now!  

(This problem is not as tedious as it first appears.) 

 

 Example: With 10 emu eggs I can make 35 omelets.  

 

 Assuming all emu eggs are identical and all omelets I make are identical too … 

a) How many omelets can I make with 20 eggs? 

b) How many omelets can I make with 200 eggs? 

c) How many omelets can I make with 2 eggs? 

d) How many omelets can I make with 16 eggs? 

e) How many omelets can I make with 1 egg? 

f) How many omelets can I make with 122 eggs? 

 

g) Here’s a YES/NO question: If I were to ask you how many omelets I could make with 6 eggs, 

19 eggs, 847 eggs, could you figure it out?  

 

h) I want to make 350 omelets. How many eggs will I need? 

i) I want to make 70 omelets. How many eggs will I need? 

j) What fraction of an egg is needed to make 1 omelet? 

 

k) Here’s a YES/NO question: If I were to ask you how many eggs are required to make 10 

omelets, 870 omelets, 922 omelets, could you figure it out? 
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We are dealing with two quantities in this omelet-making scenario: a count of eggs and a count of 

omelets. 

The number of eggs we have determines the number of omelets we can make, and vice versa, the 

number of omelets we wish to make determines how many eggs we’ll need. 

 

Also, common sense tells us that: 

 Doubling the number of eggs doubles the number of omelets we can make. 

 Tripling the number of eggs triples the number of omelets we can make.    

Halving the number of eggs halves the number of omelets we can make.   

And so on. 

 

Changing the count of eggs by some factor changes the number of omelets we can make by the same 

factor, and vice versa. 

 

And that’s the key insight. In fact, it is the very insight that solves everything!  

Here’s how:  

 

We are told that 10 emus eggs make 35 omelets. 

 10 eggs ⟷ 35 omelets  

Let’s double the number of eggs, and hence the number 

of omelets. 

 20 eggs ⟷ 70 omelets 

Let’s scale up the number of eggs by a factor of ten (and 

hence do the same to the number of omelets).  

 200 eggs ⟷ 700 omelets 

Let’s now scale down by a factor of one hundredth (that 

is, scale both sides by 0.01). 

 2 eggs ⟷ 7 omelets 

Let’s scaling by eight then gives:  

16 eggs ⟷ 56 omelets 

Can you see that that I am scaling each expression to give the right number of eggs to answer parts a), 

b), c), d), in turn?  
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But what part e) is suggesting to do seems helpful. Let’s find out how many omelets 1 egg will make. 

 

Let’s go back to   

 2 eggs ⟷ 7 omelets 

Halving now shows  

 1 egg ⟷ 3
1

2
 omelets 

 

This is powerful because I can scale this statement by any desired number to see how many omelets I 

can make with that number of eggs.  

 

Let’s be general. Let’s scale by a number 𝑁. 

 

  𝑁 eggs ⟷ 3.5 × 𝑁 omelets 

 

I can now see that with 𝑁 eggs, I can make 3.5 × 𝑁 omelets. 

 

I am now set to answer part f) and YES to part g). 

 

 

The remainder of the question focuses on the count of omelets. 

 

We can start with 

 

  10 eggs ⟷ 35 omelets  

 

and scale to answer parts h) and i).  

 100 eggs ⟷ 350 omelets     (scaled by ten) 

 20 eggs ⟷ 70 omelets   (scaled by a fifth) 

 

But as part i) is leading us, it seems that knowing the number eggs needed for 1 omelet will unlock 

everything. 
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Going back to  

 10 eggs ⟷ 35 omelets 

 

and scaling each side by 
1

35
 gives  

 

 
10

35
=

2

7
 eggs ⟷ 1 omelet 

 

(Can you see that we could have gone back to any line of our previous work to deduce the same result?)  

 

We can now scale this by any number we want, say 𝑘, to see how many eggs are needed to make 𝑘 

omelets. 

 

 
2

7
× 𝑘 eggs ⟷ 𝑘 omelets 

We are now set to answer YES to part k). 

 

Here’s what we have learned: 

 

 
As soon as we recognize in a scenario  
 

two quantities that naturally vary in value  
 
(like a count of eggs and a count of omelets) for which real-world common sense tells us that  
 

scaling the value of one quantity in that scenario by a given factor  
forces the other quantity to change by that same factor too 
 

(doubling one quantity forces the other quantity to double as well; reducing one quantity by a tenth 
forces the other quantity to reduce by a tenth as well, and so on), then we are all set to answer 
complicated questions about the scenario using just common sense! 
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I personally like to use the term scale in tandem for two quantities 𝐴 and 𝐵 in a scenario that scale 

together in the way just described.  

 

I also like to use a double arrow to indicate I have two quantities scaling in tandem and to do 

mathematics using this notation (just like I did in solving the previous problem). 

 

 amount of quantity 𝑨 ⟷ amount of quantity 𝑩 

 

 

 

 

 

MECHANICS PRACTICE 
 
Practice 88.1 Yvette likes to stack books.  
 
She has many copies of the same book and likes to make stacks of different heights 
using them. 
 

a) Can you identify two quantities in this scenario whose values can vary? 
 

b) If so, do these two quantities scale in tandem? 
 
If the answer to b) is YES:  
 

c) Yvette notices 4 books make a stack 5 inches tall. How tall would a stack of 17 books be? 
 

d) Yvette’s ceiling is 108 inches (9 feet) high. What is the maximum number of books she could 
stack starting with a book on the floor?  
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89. Exercising our Judgment  
 

Consider these two problems before turning the page.  

 

 

Example 1: Lisa drives along a straight and very 

lengthy stretch of road at a constant speed.  

a) Can you identify two quantities in this 

scenario whose values can vary? 

b) If so, do these two quantities scale in tandem? 

And if so again …  

c) Lisa is traveling at 65 miles per hour. How much distance along road will she cover in 40 

minutes?  

d) Lisa has 100 miles of road still to go. How long will it take her to cover that final stretch?  

 

 

 

Example 2: Bernard has some socks on the line to dry.  

a) Can you identify two quantities in this scenario whose 

values can vary? 

b) If so, do these two quantities scale in tandem? 

And if so again …  

c) Today it takes 24 minutes for 5 socks on the line to dry. If he hung out 8 socks instead, how 

long would it take for them to dry?   

d) He is hoping to have a pair of dry socks within 10 minutes. Could that happen for him?  
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Here are my responses.  

 

Answer 1: a) and b):  We do have two quantities whose values can vary: 

time spent driving along the road 

the distance covered during that time  

And common sense tells me that if we double, or triple, or halve, say, the amount of time 

driving, because Lisa’s speed is constant, the amount of distance she covers will change the 

same way. 

c) We have 

 1 hour of driving  ⟷ 65 miles of road covered 

Thus  

 
2

3
 hour of driving  ⟷ 

2

3
× 65 = 43

1

3
 miles of road covered 

d) From  

 1 hour of driving  ⟷ 65 miles of road covered 

we have  

 
1

65
 hour of driving  ⟷ 1 mile of road covered 

and so 

 
100

65
 hour of driving  ⟷ 100 miles of road covered 

 

Now 
100

65
= 1

7

13
 hour is one hour and 

7

13
× 60 ≈ 32 minutes. 

 

 

Answer 2 a) and b):  I can identify one quantity whose value can vary in this scenario.  

the count of socks on a line 

But common sense tells me that the length of drying time does not vary. Whether one has 1 

sock, or 5 socks, or 17 socks on the line, they will all take the same amount of time to dry.  

Parts c) and d) of this question are moot! (Though the answer to part c) is 24 minutes. And the 

answer to part d) is “NO. Two socks will also take 24 minutes to dry.”)  
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Here are three more musings for you to try. 

 

Example 3: Yvette from Practice 86.1 continues to stack her (identical) books.  

She is now making these stacks on her kitchen table but is measuring the height of  

the stack as the distance of the top book in her stack to the floor.   

a) Identify two quantities in this scenario whose values can vary. 

b) Do these two quantities scale in tandem? 

 

 

 

Example 4: Jaspreet is stuffing envelopes. She started yesterday and stuffed 1200 of them. 

She is continuing the job today, working at the constant rate of stuffing 200 envelopes per 

hour.  

 

We have two quantities in this scenario whose values can vary: 

• The total number envelopes Jaspreet has stuffed (yesterday and today)  

• The number of hours she’ll spend today working on the job 

Do these two quantities scale in tandem? 

 

 

 

 

 

Example 5: Lisa drives along that straight road again at a 

constant speed of 65 mph. The start of that road is 52 miles 

from her home and the road takes her directly further away 

as she travels along it. 

We have two quantities in this scenario whose values can vary: 

• The time Lisa spends driving along that road  

• The number of miles she is from home after driving along that road for that given time  

Do these two quantities scale in tandem? 

  

 

  



 
 
 

196 
 

 

None of these three scenarios have quantities that scale in tandem. 

To see why, try doubling the value of one quantity and see if the other doubles as well. (Or triple, or ten-

tuple!) 

 

For Yvette in Practice 86.1 and Example 3 we have: 

 4 books ⟷ 5 inches + height of table 

 

Doubling the number of books gives 

8 books ⟷ 10 inches + height of table 

 

The height of the stack, as it is measured now, has not doubled!  

 

 

 

For Jaspreet in example 4 we have  

1 hour of work today  ⟷ 200 + 1200 envelopes stuffed 

 

Doubling the number of hours of work today gives 

2 hours of work today  ⟷ 400 + 1200 envelopes stuffed 

 

The total number of envelopes stuffed has not doubled.  

 

For Lisa we have  

1 hour of travel along the road  ⟷ 65 + 52 miles from home  

 

Doubling the number of hours driven gives 

2 hours of travel along the road ⟷ 130 + 52 miles from home 

 

The distance from home has not doubled.  

 

Practice 89.1 What makes the answers to Example 1 and Example 5 so different?  

The first had two quantities that do scale in tandem and the second did not.   
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And now just two more examples for you to mull on. These ones come up in real life, for sure.  

 

 

 

Example 6: A map is a “scaled” drawing of a real-world location.  

Each map comes with a “key.” For example, the map shown has 

the key 1:300. 

a) Identify two quantities associated with a map whose 

values can vary and naturally scale in tandem.  

b) What does the key 1:300 mean? 

c) The pictures of the two trees on the map are 1 inch apart. How far apart are the 

corresponding trees in real life?   

 

 

Example 7: “There are approximately 2.54 centimeters in an inch.” 

a) Does this statement imply a scenario with two quantities whose values can vary and do 

so in tandem? 

b) Approximately how tall am I in centimeters given than I am 72 inches (6 feet) tall? 
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Answer 6:  We have two quantities whose values can vary. 

 

• distances between objects drawn on the map 

• the matching real-life distances between the objects these pictures represent   

 

And for the map to be a “scaled drawing” means precisely that the map is drawn so that these 

quantities scale in tandem.  

 

The key tells us that 

 

1 unit of length on the map ↔ 300 units of length in the real world 

 

So, 1 cm of length on the map matches 300 cm of length in the real world; 1 inch of length on the 

map matches 300 inches of length in the real world; 1 hand width of length on the map matches 

300 hand widths of length in the real world, and so on.  

 

As just stated, the answer to part c) is 300 inches, which is 25 feet. 

 

Answer 7:  We have two quantities whose values can vary 

• the numerical value of a length measured in centimeters 

• the numerical value of the same length measured in inches    

Commonsense tells us that these scale in tandem: if the length of an object measures as 𝑎 

centimeters and as 𝑏 inches, then an object twice as long is sure to measure as 2𝑎 centimeters 

and as 2𝑏 inches, for example.  

 

We have (up to the approximation) 

  2.54 centimeters of length  ⟷ 1 inch of length 

Thus, 

72 × 2.54 ≈ 183 centimeters of length  ⟷ 72 inches of length 

 

I am approximately 183 centimeters tall.  
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We have just seen that scenarios involving  
 

• Constant rates (driving at a constant speed, stuffing envelopes at a fixed rate, increasing a 
stack height one book-width at a time) 

• Unit conversion  

• Scaled drawings 
 
often yield pairs of quantities that scale in tandem. (But one must still think through matters and use 
commonsense to make sure.) 
  

 

 

 

 

 

MECHANICS PRACTICE 
 
Practice 89.2 At present, 1 Australian dollar is worth 67 U.S. cents.  
 

a) Does this statement imply a scenario with two quantities whose values can vary and do so in 
tandem? 
 

b) I have $500 U.S. dollars saved up for spending money in Australia. How many Australian 
dollars is that amount?   
 

 
Practice 89.3 Write a version of Jaspreet’s envelope-stuffing scenario (Example 4) that does lead to 
two quantities that scale in tandem. 
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90. Schoolbook Examples  
 

Let’s get a piece of language out of the way.  

Imagine a scenario that has two quantities whose values do, or can, or can be imagined to vary and that 

they do so by scaling in tandem. (Tripling the value of one quantity triples the value of the other; halving 

the value of one quantity halves the value of the other, and so on.)  

Then we say that the two quantities are in a proportional relationship. 

 

 

Example 8: Here is a data table of some quantities labeled 𝑥 and 𝑦.  

Each row of the table shows a value for the quantity called 𝑥 and its matching quantity called 𝑦.  

Could this data have come from a proportional relationship?  

 

 
 

 

 

What do you think? 
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Answer 8: 

If we do have a proportional relationship at play, then the first line of the table gives 

 

 6 for value 𝑥 ⟷ 9 for value 𝑦 

 

Scaling by a factor of 
1

6
 gives  

 1 for value 𝑥 ⟷ 
3

2
 for value 𝑦 

Then scaling by an arbitrary number 𝑛 gives 

 𝑛 for value 𝑥 ⟷ 
3

2
𝑛 for value 𝑦. 

 

Every row of this table does conform to this pattern: each 𝑦 value is one-and-a-half as large as 

its corresponding 𝑥-value. 

This data could come from a proportional relationship.  

(But who really knows? Maybe a next data pair might disobey this pattern?) 

 

Here’s an example from geometry class.  

Example 9: Consider the set of all figures similar to this shape. 

 

Suppose for each of these shapes we record the length of the side that matches side 𝑎 shown in 

the diagram and the length of the side that matches side 𝑏 shown.  

 

Will the data we collect be in a proportional relationship?  
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Answer 9:  

We learn in a geometry class that two figures are similar if  

• all corresponding angles have the same measure 

• all corresponding side lengths are scaled by the same factor (call it 𝑘). 

 

In this scenario we are looking at many scaled copies of the polygon shown, matching the length 

of particular top edge of each polygon with the length of a particular bottom edge of the same 

polygon.  

 

In the figure shown we have, for the given figure:  

 

The top edge under consideration has length 𝑎 ⟷ The bottom edge under 

consideration has length 𝑏  

 

For a similar figure with scale factor 𝑘 geometry tells us:  

 

The top edge under consideration has length 𝑘𝑎 ⟷ The bottom edge under 

consideration has length 𝑘𝑏 

 

This precisely fits the definition of a proportional relationship. 

 

The data is in a proportional relationship. 

 

 

What do you think of this next example?  

Is there a hidden proportional relationship afoot? 

 

Example 10:  We have that 120% of a quantity has value 300. What is the value of quantity 

itself? 
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Answer 10:  

A percentage is simply a fraction with denominator 100. So, if a quantity has value 𝑄, then 120% of the 

quantity is the fraction 
120

100
 of the quantity, namely, 

120

100
× 𝑄. 

We are told that this has value 300. 

 
120

100
× 𝑄 = 300 

 

We deduce that 𝑄 =
100

120
× 300 =

5

6
× 300 = 250. 

 

But we can also answer this question by thinking of a proportional relationship. 

 

The stated percentage of a given quantity is in a proportional relationship with the 

corresponding portion of the quantity.  

 

(Halving the stated percentage that describes a portion corresponds to halving the portion, for 

instance.)   

 

We have: 

 

120% of the quantity ⟷ the value 300 

20% of the quantity ⟷ the value 50  (Scale by one sixth) 

100% of the quantity ⟷ the value 250  (Scale by five) 

 

 

 Question: Which of these two approaches felt more natural to you? 

 

 



 
 
 

205 
 

 

Now let’s get very schoolbook-y! 

 

Example 11:  The following is the graph of some data showing that there seems to be a direct 

correlation between the count 𝐶 of carrots one eats in an evening and the number of hours 

sleep 𝑆 one obtains that night from doing so. 

Does this fictitious (and absurd!) data represent a proportional relationship? 

 

(Assume you really are seeing a straight line passing through the origin in this picture.) 

 

 
 

 

 

 

Answer 11:   We see one data point from the graph:   

 

eating 5 carrots ↔  3 hours of sleep 

 

But does the data depicted in the graph suggest matters are scaling in tandem? 
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We have a straight line of slope 
3

5
. 

 

But we know from Chapter 10 that when computing slope of a line we can adjust the horizontal 

and vertical steps by the same scale and not affect matters. Thus, since (5,3) is a point on the 

line, so is (5𝑘, 3𝑘) for any scale factor 𝑘. And having (5𝑘, 3𝑘) a data point is saying that   

 

eating 5𝑘 carrots ↔  3𝑘 hours of sleep 

 

We do have data scaling in tandem! 

 

This example shows that if data comes from a graph that is a straight line through the origin, then we 

can be sure that the data is in a proportional relationship. 

 

 

first coordinate 𝑝  ↔   second coordinate 𝑞 

first coordinate 𝑘𝑝  ↔   second coordinate 𝑘𝑞 
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Practice 90.1 Is data coming from a straight-line graph that does not pass through the origin in a 

proportional relationship?  

To be specific:  

 

If 𝑝 and 𝑞 represent data that comes from a point on a straight line graph 𝑦 = 𝑚𝑥 + 𝑏,  

will 𝑘𝑝 and 𝑘𝑞 also represent data that comes from a point on the line?  

Assume here that the 𝑦-intercept 𝑏 is not zero. 
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MUSINGS 
 
Musing 90.2 Given a square, we can measure two quantities associated with it: 
 

• its area 

• its perimeter 
 
Different squares give different values for these quantities.  
 
Is the area and perimeter data of squares in a proportional relationship? 
 
Musing 90.3  
 
Given a circle we can measure its diameter and its circumference. Different circles give different 
values for these quantities.  
 
Is the diameter and circumference data of circles in a proportional relationship?  
 
Musing 90.4    
 
a) Each student in a certain class an equal number of black pens and blue pens in their pencil case.  
 
The students collected data by asking each other how many black pens and how many blue pens they 
each have. 
 
Will the data be seen as coming from a proportional relationship? 
 
b) Each student in another class has twice as many black pens as blue pens in their pencil case.  
 
The students collected data by asking each other how many black pens and how many blue pens they 
each have. 
 
Will the data be seen as coming from a proportional relationship? 
   

 

 

 

 

 

 

 

 



 
 
 

209 
 

 

 

MECHANICS PRACTICE 
 
Practice 90.5  
a) Does this data look like it could come from a proportional relationship? 

 

 
 

b) Trusting that the data does come from a proportional relationship, make a prediction for the value 
of 𝑦 if 𝑥 has value 100, and make a prediction for the value of 𝑥 if 𝑦 has value 100. 
 
 
Practice 90.6 If 210% of a number is 700, what is the number?  
 
 
Practice 90.7 Could this data be coming from a proportional relationship?  
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211 
 

 

91. A Prime Example of a Mathematical Model 
 

We have just seen that if the graph of data coming from a scenario in which two quantities can vary in 

value sits on a straight line passing through the origin, then that data is in a proportional relationship.  

 

 

 

5 carrots eaten ↔ 3 hours of sleep 

5𝑘 carrots eaten ↔ 3𝑘 hours of sleep 

 

 

Is the converse true? 

 

If we graph data that we first know to be in a proportional relationship, will it yield graph with data 

points sitting in a straight line though the origin?  
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Here is the start of a table of data points for two quantities 𝐴 and 𝐵 known to be in a proportional 

relationship.  

 
 

Even though we have only one data point, knowing that we have a proportional relationship at hand 

allows us to deduce what every possible data point shall be! 

We have  

5 of quantity 𝐴  ⟷  8 of quantity 𝐵. 

Scaling by a fifth, we obtain 

1 of quantity 𝐴  ⟷  
8

5
= 1.6 of quantity 𝐵. 

Scaling by a value 𝑥 yields 

𝑥 of quantity 𝐴  ⟷  1.6𝑥 of quantity 𝐵. 

 

 

 

Here we have focused on quantity 𝐴 as the “primary” variable (the independent variable) and followed 

the practice to subsequently denote such a variable by the letter 𝑥. If we then use 𝑦 to denote the 

matching value of quantity 𝐵, then we have just shown that  

𝑦 = 1.6𝑥 

The data is indeed following an equation whose graph we know is a line through the origin. (It is a line 

with slope 1.6 and 𝑦-intercept 0.) 
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Practice 91.1 Following this work, show that for a number 𝑦 we also have  

 

0.625𝑦 of quantity 𝐴  ⟷  𝑦 of quantity 𝐵 

 

What equation is this suggestion for the data if we do the unconventional thing of regarding 𝑦 

as the independent variable and 𝑥 the dependent variable? 

 

A mathematical model of a real-world scenario is a piece of mathematics (an equation, a collection of 

equations, a graph, for instance) that describes the real-world scenario and allows you to make 

predictions about the scenario. 

 

Mathematicians try to create models that match the real-world scenario as closely as possible, but 

recognize that there will always be “noise” and human measurement errors and outside influencing 

parameters, and so on. Models are usually seen as close approximations. 

 

But we have just seen an example of a perfect mathematical fit with real-world phenomenon.  

 

We have shown: 

 

 
If a real-world phenomenon is known to be in a proportional relationship, then the data from that 
scenario is sure to be perfectly described by the equation of a line that passes through the origin. 
 

𝑦 = 𝑚𝑥 
 
And conversely, data that comes from points on a line passing through the origin is sure to be in a 
proportional relationship.  
  

 

And we saw this in our very first example of the chapter.  

 

We had 

 With 𝑥 = 𝑁 eggs you can make  𝑦 = 3.5 × 𝑥 omelets 

 

And if we want to make the count of omelets the focus: 

 

 To make 𝑥 = 𝑘 omelets, you will need 𝑦 =
2

7
𝑥 eggs. 

 

These are both equations of straight lines through the origin. 
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Comment: As I said earlier, I often find this insistence on naming one’s unknowns as “𝑥” and “𝑦” 

unnatural. In this example, I’d rather write: 

 

Let 𝑁 be the number of eggs required to make 𝑘 omelets.  

Then we have  

𝑘 = 3.5 × 𝑁 

and 

𝑁 =
2

7
× 𝑘 

  

as we did in the opening example (though I don’t know why I chose “𝑘” for the count of omelets). 

 

 

 

For each scenario with data in a proportional relationship, one has a choice as to which of the two 

quantities should be deemed the control (independent) variable. The choice made, of course, will 

depend on context. 

 

 

Example: In problem 89.2 we stated “At present, 1 Australian dollar is worth 67 U.S. cents.” 

In international markets, an Australian dollar is denoted AUD and U.S. dollars as USD. 

 

a) Write an equation that relates AUD to USD with the independent variable being USD. 

b) Write an equation that relates AUD to USD with the independent variable being AUD. 

 

c) Lulu, an American, is about to travel to Australia with a wallet full of USD. Which of these two 

equations is likely more useful to her? 

d) After returning from Australia, Lulu has some Australian notes left in her wallet. Which of the 

two equations above is likely to be most useful to her now?  
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Answer:  Common sense tells us that we have a proportional relationship here with 

 

0.67 AUD  ↔  1 USD 

 

a) Let’s scale by a number 𝑥. Then we obtain  

0.67𝑥 AUD  ↔  𝑥 USD 

 

This tells me that 𝑥 USD are worth 0.67𝑥  AUD. (“Just multiply by 0.67.”) 

 

Rather than try to write this statement as a formal schoolbook equation of a line, I think the 

world will better understand me expressing this as:   

 

𝐴𝑈𝐷 = 0.67 × 𝑈𝑆𝐷 

 

b) Let’s now scale our opening data point by 
1

0.67
≈ 1.49 and then by a number 𝑥. Then we 

obtain  

0.67𝑥 AUD  ↔  𝑥 USD 

1 AUD  ↔  1.49 USD 

𝑥 AUD  ↔  1.49𝑥 USD 

 

This tells me that 𝑥 AUD are worth 1.49𝑥  USD. (“Just multiply by 1.49.”) 

Again, I think the world will best understand this if I write:   

 

𝑈𝑆𝐷 = 1.49 × 𝐴𝑈𝐷 

 

c) Heading to Australia with USD in her wallet, the equation in part a) is probably most useful to 

Lulu. 

 

d) Upon her return, with AUD in her wallet, the equation in part b) is probably most useful to 

her. 
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Of course, we’ve gone deep into the study of data in a proportional relationship and related it to 

schoolbook mathematics. 

 

But, as the opening example of this chapter shows, we actually conducted all this work without being 

explicit about it: the thinking behind proportional reasoning is somewhat innate.  

 

Just follow your common sense thinking as best you can! 

 

MUSINGS 
 
Musing 91.2 When collecting data from a scenario with two quantities in a proportional relationship, 
why must (0,0) be one the data points you could collect?      
 
Musing 91.3 Would you like to look up the term unit rate from a textbook chapter on proportional 
reasoning and try to make sense of its connection to the slope of a line and a data point of the form 
(1, 𝑟) and whatever else is thrown your way on this? (Please say NO. All this is unnecessary clutter.) 
 

 

MECHANICS PRACTICE 
 
Practice 91.4 Recall from Problem 86.1 that Yvette likes to stack identical books. She had  
 
 

4 books ↔ a stack 5 inches tall 
 
 
Write a formula for the height of a stack with 𝑁 books in the stack. 
 
 
Practice 91.5 Recall from Example 1 that Lisa is 
driving in a straight road a constant speed of 65 
miles per hour.  
 
We have 

1 hour of time passing ↔   65 miles of road traversed. 
 

Write a formula for the distance along the road she covers in 𝑡 hours.  
 

 
Practice 91.6 Recall from Example 7 that there are 2.54 centimeters in an inch. 
Write a formula for the number of inches in 𝑁 centimeters.  
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92. Ratios 
 

Two quantities 𝐴 and 𝐵 that can be deemed of the same type in some way (for example, 𝐴 could 

represent a collection of apples and 𝐵 a collection of bananas, but apples and bananas could all be 

deemed “fruit”) are said to be in an 𝒂: 𝒃 ratio (“𝑎 to 𝑏 ratio”) if it is possible to divide quantity 𝐴 into 𝑎 

parts of equal size and quantity 𝐵 into 𝑏 parts of the same equal size.  

 

Some examples make this clear.  

 

Example: The blue dots and the orange dots in the picture are in a 6-to-4 ratio. We can see the 

blue dots as 6 groups of one dot and the orange dots as 4 groups of one dot.  

 

We can also say the dots come in the ration 3:2. This time see the blue dots as 3 groups of two dots and 

the orange dots as 2 groups of two dots. 

 

We could also say they come in a 12:8 ratio: view the blue dots as 12 sets of half dots and the yellow 

dots as 8 sets of half dots.  

 

And we could keep going!  

 

Note: The order we present words and numbers is important. In the above, it is clear that we were 

talking about blue dots first, orange dots second. Thus, in writing a ratio 6:4 or 3:2 or 12:8, it is 

understood that the first number mentioned refers to the blue dots and the second number to the 

orange dots.  

This is the practice followed when talking about ratios. 
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Practice 92.1 Come up with three other ways to describe the ration of blue dots to orange dots 

in the previous example. (Give the group size you are thinking of for each ratio you present.)  

 

Example: The lengths of these two sticks come in a 4:5 ratio. 

 

Here it is clear we must be referring to the pink stick first and the green stick second and that we’re 

thinking of dividing each length into the equal-sized part of 1 foot. 

 

If we think of equal-sized parts of inches, we could say that these sticks come in a 48:60 ratio. 

If we think yards, we would say they come in a 1
1

3
: 1

2

3
 ratio. (Though that is awkward!) 

 

 

Example: Some Americans and Australians attend a party.  

                  The ratio of Americans to Australians is 3:2.  

a) If 18 Australians are present, how many Americans are present too? 

b) If instead 60 Americans are present, how many Australians are present too? 

c) The Americans can be split into three equal-sized groups of 𝑁 people. How many Australians are 

there (in terms of 𝑁)? 

 

Answer: 

Part c) encompasses the thinking needed to answer all the questions.  

 

The statement that we have a 3:2 ratio of Americans to Australians tells us that we the Americans 

can be split into three groups of equal size and the Australians into two groups of the same size. We 

must have 3𝑁 Americans and 2𝑁 Australians for some number 𝑁. (This answers part c).)  

 

For part a), we see that 2𝑁 = 18 and so 𝑁 must be 9. Consequently, there are 3𝑁 = 27 Americans. 

For part b), we see that 3𝑁 = 60 and so 𝑁must be 20. Consequently, there are 2𝑁 = 40 Aussies.  
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We have:  

 

Two quantities 𝑨 and 𝑩 come in an 𝒂: 𝒃 ratio, precisely if there is a common part size 𝑵 so that  

 Amount of quantity 𝑨  = 𝒂 × 𝑵 

 Amount of quantity 𝑩  = 𝒃 × 𝑵 

 

But as we saw in our first two examples, a 6: 4 ratio could also be seen as a 3: 2 ratio or as a 12: 8 ratio, 

and a 4: 5 ration can be seen as a 48: 60 ratio or as a 1
1

3
: 1

2

3
 ratio.  

 

Practice 92.2 Some pink and purple dots come in a 5: 3 ratio. 

 

I got this value by looking at groups of size twelve and saw that there were 5 × 12 = 60 pink 

dots and 3 × 12 = 36 purple dots. 

a) When Cecile looked at the dots, she said they came in a 10: 6 ratio. What sized groups must 

she have been noticing? 

 

b) When CeCe looked at the dots, she said they came in a 30: 18 ratio. What sized groups must 

she have been noticing? 

c) When Cecelia looked at the dots, she said they came in a 60: 36 ratio. What sized groups 

must she have been noticing? 

d) When Celine looked at the dots, she said they came in a 180: 108 ratio. What sized groups 

must she have been noticing? 

 

Here’s a general result with a mathy proof.  

 

Result: If two quantities come in an 𝑎: 𝑏 ratio, then they can also be said to come in a 𝑘𝑎: 𝑘𝑏 

ratio for any positive number 𝑘. 

 

As you can guess, this must come from changing one’s perspective of what the equal-sized groups are in 

a given picture.  
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Proof:  

Suppose quantities 𝐴 and 𝐵 are in an 𝑎: 𝑏 ratio. Then there is a number 𝑁 (the “group size”) so 

that  

 Amount of quantity 𝐴 = 𝑎 × 𝑁 

 Amount of quantity 𝐵 = 𝑏 × 𝑁 

We have 𝑎 groups of size 𝑁 for quantity 𝐴 and we have 𝑏 groups of size 𝑁 for quantity 𝐵.  

 

If we start thinking “half the group size,” then we can write 

 

  Amount of quantity 𝐴 = 𝑎 × 2 × (
𝑁

2
) 

 Amount of quantity 𝐵 = 𝑏 × 2 × (
𝑁

2
) 

 

We have 2𝑎 groups of size 
𝑁

2
  for quantity 𝐴 and we have 2𝑏 groups of size 

𝑁

2
   for quantity 𝐵, 

and so the quantities can be said to also come in a 2𝑎: 2𝑏 ratio. 

 

If we think “third the group size,” then we can write 

 

  Amount of quantity 𝐴 = 𝑎 × 3 × (
𝑁

3
) 

 Amount of quantity 𝐵 = 𝑏 × 3 × (
𝑁

3
) 

 

We have 3𝑎 groups of size 
𝑁

3
  for quantity 𝐴 and we have 3𝑏 groups of size 

𝑁

3
   for quantity 𝐵, 

and so the quantities can be said to also come in a 3𝑎: 3𝑏 ratio. 

 

If we think “quadruple the group size,” then we can write 

 

  Amount of quantity 𝐴 = 𝑎 ×
1

4
× (4𝑁) 

 Amount of quantity 𝐵 = 𝑏 ×
1

4
× (4𝑁) 

 

We have 
1

4
× 𝑎 groups of size 4𝑁  for quantity 𝐴 and we have 

1

4
× 𝑏 groups of size 4𝑁  for 

quantity 𝐵, and so the quantities can be said to also come in a 
1

4
× 𝑎:

1

4
× 𝑏 ratio. 
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In general: 

 

If we think “
1

𝑘
 of group size,” then we can write 

 

  Amount of quantity 𝐴 = 𝑎 × 𝑘 × (
𝑁

𝑘
) 

 Amount of quantity 𝐵 = 𝑏 × 𝑘 × (
𝑁

𝑘
) 

 

We have 𝑘𝑎 groups of size 
𝑁

𝑘
  for quantity 𝐴 and we have 𝑘𝑏 groups of size 

𝑁

𝑘
   for quantity 𝐵, 

and so the quantities can be said to also come in a 𝑘𝑎: 𝑘𝑏 ratio. 

 

 

This result has the feel of a proportional relationship of some kind, but it is not really one. We’re just 

finding different ways of expressing one static situation: a fixed picture of blue and orange dots; a fixed 

picture of two sticks.  

 

Our third example of Americans and Australians at a party, however, gave us a way to think dynamically 

about a static example. There was a fixed party, but we were not told the actual number of attendees. 

This allowed us to imagine different scenarios that could be true for the situation described and thus to 

engage in dynamic thinking.  

 

Example: Every night for a year Americans and Australians congregated at a residence for a 

party. Although the number of attendees varied from night to night, matters were such that 

ratio of Americans to Australians was always 3:2. 

 

a) Explain why the number of Americans that attended each night and the matching number of 

Australians is data that scales in tandem. 

 

b) One night there were 500 attendees at a party! How many of those attendees were 

Australian?  
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Answer 

a) Because there is a 3:2 ratio at play, we know on any given night we can split the Americans into 

3 groups of equal size and the Australians into 2 groups of that same size. 

 

Suppose a later party has double the number of Americans and double the number Australians. 

We can still split attendees into 3 and 2 equal-sized groups—just the equal-sized groups will 

now be doubled in size. We’ll still have a 3:2 ratio and a valid party. 

 

Suppose another instead has half the number of Americans and half the number Australians. We 

can still split attendees into 3 and 2 equal-sized groups—just the equal-sized groups will be half 

the size they were before in this case. We’ll still have a 3:2 ratio and a valid party. 

 

In general, if we scale the number of Americans and Australians each by a factor 𝑘, we can still 

split attendees into 3 and 2 equalsized groups—the equal-sized groups will be 𝑘 times as big. 

We still have a 3:2 ratio and a valid party. 

 

We are seeing data scaling in tandem: if (𝑝, 𝑞) is a valid data point in this scenario (𝑝 Americans 

and 𝑞 Australians), then (𝑘𝑝, 𝑘𝑞) is a valid data point too. 

 

a) Following the notation above, we know 

 

𝑝 = 3𝑁 

𝑞 = 2𝑁 

 for some value 𝑁. 

We are told that 𝑝 + 𝑞 = 500 and so 5𝑁 = 500 giving 𝑁 = 100.  

The number of Australians present is 2𝑁 = 200. 

 

This example shows how statements about ratios can be turned into dynamic situations that then lead 

to data in a proportional relationship.  
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MUSINGS 
 
Musing 92.3 Ratios are not limited to a discussion with just two quantities. For instance, can you 
imagine a picture of blue, pink, yellow, orange, and red dots in a 3: 6: 2: 7: 1 ratio? 
 
a) In a picture of colored dots, these five colors with counts in the above ratio, there are five red dots.  
How many dots are there of each other color? 
 
b) If instead in the picture there are 18 pink dots, how many dots are there of each color this time?  
 
 
Musing 92.4 Here’s an annoying puzzle-book problem. Can you solve it using just common-sense 
thinking? 
 

If 4 cats can catch 9 rats in 2 days, to the nearest hour, how long does it take 1 cat to catch 1 rat? 
 
 

 

 

MECHANICS PRACTICE 
 
Practice 92.5 The ratio of blue pens to black pens in my pencil case is 7: 9. I have 64 blue and black 
pens in total. How many of those pens are blue?  
 
(And why am I carrying so many pens? And why am I speaking about them in such a cryptic way?) 
 
 
Practice 92.6 What does it mean to say that two quantities are in a “one-to-one ratio”? 
 
 

Practice 92.7 Two quantities are in a 1
3

4
∶  

2

3
 ratio. Give a much simpler way to express this ratio. 

 

 
Practice 92.8 One in five Americans like the taste of Vegemite. What is the ratio of Americans who 
like the taste of Vegemite to the number who don’t?   
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93. Visualizing Ratio Problems  
 

A discussion of a “ratio” fundamentally refers to quantities coming in sets of equal-sized groups. 

 

If we represent equal-sized groups visually as equal-sized blocks, then we might be able to “see 

through” a problem about rations with some ease. 

 

All the problems presented in this section are somewhat artificial. So, just enjoy them as intellectual 

logic puzzles to sharpen one’s mind in some general sense. 

 

(Also, the problems, like ratio problems tend to be, are “static.”  They are each about just one instance 

of a particular scenario and do not involve proportional reasoning per se.) 

 

Example:  There are apples and oranges in my fruit bowl making a total of 40 pieces of fruit in 

all. The ratio of apples to oranges is 3: 5. 

 

How many more oranges are there than apples in the bowl? 

 

Answer: We can divide the fruit into equal-sized groups with three of those groups making for 

the apples and five the oranges.  

 

Here's a picture showing this. 

 
 

We see 40 pieces of fruit divided into 8 groups. There must be 5 items per group. 

 

We also see that are two more groups of oranges than apples, and so there are 2 × 5 = 10 

more oranges than apples.   

 

Practice 93.1 On a tray sit glasses of milk and glasses of soda. There are 35 drinks in all with the 

ratio of milk to soda drinks 2: 5. How many drinks of each kind are there? 
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Example: Ms. A has twice as much money in her savings account as Ms. B does. 

Ms. B has four fifths the amount of money in her account as Ms. C does. 

 

What is the ratio of Ms. A’s account balance to Ms. C’s? 

 

Answer: Does this picture do it for you? Do you see that the ratio we seek must be 8: 5?  

 
 

 

 

 

Practice 93.2 Mr. D has triple the amount money in his savings account as Mr. E does. 

And Mr. E has 150% the amount of money as Mr. F does. 

What is the ratio of Mr. F’s account balance to Mr. D’s? 
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Example: Box A contains a 120% more books than box B does.  

 

If half the books are taken out of box A and moved to box B, what now is the ratio of the 

number of books in box A to the number of books in box B?    

 

Answer: Start with a picture showing box A with 20% (a fifth) more books than box B.  

 

Can you see then see that after the transfer of books, box A will have just 6 − 3 = 3 units of 

books and box B will have 5 + 3 = 8 units of books? 

 

The ratio we seek is thus 3: 8. 

 

 

 

 

 

Practice 93.3 Crate A of kiwi fruit has 33
1

3
% more fruit than crate B. 

Unfortunately, upon inspection, 33
1

3
% of the fruit in crate B had to be discarded.  

 

What now is the ratio of the count of fruit in crate A to the count in crate B? 
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Example: Quentin has some gumdrops. Cuthbert has twice as many.  

 

When Quentin was later given 3 more gumdrops the ratio of the count of his gumdrops to the 

count of Cuthbert’s changed to 3: 4. 

 

How many gumdrops do the fellows each now have?   

     

 

Answer: We start with a picture showing a 1: 2 ration of gumdrops, but add 3 gumdrops of 

Quentin’s count is meant to show 7 equal-sized groups of gumdrops with three of those groups 

belonging to Quenton and four to Cuthbert.  

 

It must be that those three extra gumdrops represent one group.  

 

Thus, Quentin has 9 gumdrops and Cuthbert 12. 

 

 

 

 

Practice 93.4 Allistaire has two-thirds the number of parking tickets as Poindexter has. 

 

Allistaire just got two more tickets. He still had less tickets than Poindexter, but the ratio of 

tickets between them has changed to 7:9. 

 

How many tickets do they each now have? 
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Example: Millicent and Mildred each started with equal amounts of cash. After Millicent spent 

$12 and Mildred $2, the cash they each had remaining was in a 3: 5 ratio.  

 

How much cash did they each start with? 

 

Answer:  This picture shows blocks of cash illustrating a 3: 5 ratio. 

We have that three blocks of cash for Millicent and $12 more matches five blocks of cash for 

Mildred and $2 more. 

 

 

Actually, let’s tweak this picture.  

 

 
We see that each block of cash must be $5. 

 

They thus each started with $27. 

 

 

Practice 93.5 Hal and Hank each started with equal amounts of cash. Hal spent $29 and Hank 

$26 and as a result Hal was left with half as much cash as Hank.  

 

How much cash did they each start with? 

 

 



 
 
 

230 
 

 

 

Example: Egbert and Figbert each have some cookies. The count of their cookies come in a 4: 7 

ratio (with Figbert having the most cookies). 

 

When Egbert eats half of his cookies and Figbert east 20 of his, the ratio of their cookie count 

changes to 1: 3. 

 

How many cookies did Egbert eat? 

 

Answer:  Look at this picture showing a 4: 7 ratio of cookie counts.  

 

For Filbert to end up with triple the number cookies than Egbert, he must have six blocks of 

cookies remaining. Thus “eating 20 cookies” must be equivalent to “eating one block of 

cookies.” 

 

Thus each block represents 20 cookies.  

 

As Egbert ate two blocks, he ate 40 cookies. 

   

Practice 93.6 I have a supply of lime candies and cherry candies, currently in a 3: 2 ratio. (There 

are more lime candies than cherry ones.) I eat 10 lime candies and the ratio changes to 2: 3.  

 

How many candies of each type did I have to begin with?  
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MUSINGS 
   

 
Musing 93.7 Here is a tricky puzzle.  
 
There are 33 people in a room. Of all the men in the room, a third of them are Australian. Of all the 
women in the room, three-sevenths of them are Australian. There are 13 Australians altogether.  
 
How many Australian men are there? How many non-Australian men?  
How many Australian women are there? How many non-Australian women? 
 

 

 

MECHANICS PRACTICE 
 
Practice 93.8 Did you try the six problems in the section? 
 
Practice 93.9 Make up two more problems that can be solved in the style of this section.  
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233 
 

 

94. Summary  
 

The goal of this chapter is to make a simple point: Don’t forget to use common sense thinking! 

 

The fact that we could answer the emu-egg omelet proportional reasoning problem without any 

preparation in “proportional reasoning” says it all. (We even wrote down the equations of lines through 

the origin for that problem without realizing it.) It’s too easy to get bogged down with fancy 

mathematics and lose sight of uncluttered and natural thinking.  

 

So, when faced with a challenge about two quantities whose values can or do vary—or at least be 

imagined to vary—take a step back and ask: 

 

Is the data here scaling in tandem? 

 

If the answer is YES, then you are golden. You can answer any reasonable question about the scenario 

just by following common sense.  

 

You can even answer any schoolbook question about it too if you recall that the such data, when 

graphed, is sure to lie on a straight line that passes through the origin. (And, conversely, any data that 

comes from such a graph is sure scale in tandem.) 

 

Data that scales in tandem often arises in these situations: 

• Constant rate problems (walking or driving at a constant speed, stuffing envelopes at fixed 

rate, for example) 

• Unit conversion problems (converting lengths measured in inches to lengths measured in 

centimeters, converting from USD to AUD, for example) 

• Percentage problems  

• Scaled maps and scaled drawings  

• Ratio problems 

Ratio problems tend to be “static problems” (about the ratio of Americans and Australians at a certain 

party) but can be turned into “scaling in tandem” problems if the static situation is repeated (Australians 

and Americans party every night together for a year, always in the same ratio of nationalities, for 

instance.)  

 

And that’s it. If you recognize scaling in tandem, then common sense is your path to success!  
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Chapter 12 

Some Algebra Tricks and Hacks 
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95. Mind Reading Tricks 
 
You are probably familiar with tricks of the following ilk: 

TRICK 1: 

Think of a number. 

Add 3 and multiply the result by five.  

Add 5 and double the result.  

Divide by ten and subtract the number you first thought of. 

 

Barring arithmetic mistakes, you are now thinking the number 4.  

Wow!  

 

Some tricks like this are easy to see through.  

TRICK 2:  

Think of a number. 

Add 17 and subtract the number you first thought of. 

 

You are now thinking 17. 

Not so wow!  

 

But some are more mysterious.  

TRICK 3:  

Roll three dice. 

Multiply one of the rolls you see by 5 and add 1. 

Double the result and add a second roll you see. 

Multiply the result by 5 and add 1. 

Double the result and add the third roll you see. 

You have a three-digit number.  

 

Subtract 22 and get a new three-digit number.  

That number has as digits your three dice rolls!  

 

(As a magic trick, I would ask you tell me the three-digit number you have from line six, secretly subtract 

22 from it myself, and then announce to you what your three dice rolls were—to your astonishment!)  
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Algebra is the way to explain these tricks.  

 

In fact, when someone performs one of these tricks on me, I always choose in response to “think of a 

number” the symbol 𝑁—for some (unknown to me) number a person might think of. 

 

TRICK 2 is the unexciting trick, so let’s examine what happens with that one first.  

 

 Think of a number.  𝑁 

 Add 17.   𝑁 + 17 

 Subtract the number first thought of:  

    𝑁 + 17 − 𝑁 

 

And of course, we are thinking 17 because algebra tells us that 𝑁 + 17 − 𝑁 is 17. 

 

Now to TRICK 1: 

 

Think of a number.  𝑁 

Add 3.   𝑁 + 3 

Multiply the result by five. 

   5(𝑁 + 3) = 5𝑁 + 15 

Add five:   5𝑁 + 20 

Double the result:   

2(5𝑁 + 20) = 10𝑁 + 40  

 Divide by ten:   

    
1

10
× (10𝑁 + 40) = 𝑁 + 4 

 

Subtract the number you first thought of: 

    𝑁 + 4 − 𝑁 = 4 

 

Yep! Everyone is sure to end up with the number 4. 

 

 Practice 95.1: Make up your own “think of a number” trick that you are sure is going to work!   
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Practice 95.2 Open up a month of a calendar. 

 

a) Without you looking, have a friend circle (or just mentally select) a 2-by-2 block of dates, sum 

the four dates selected, and tell you the sum. 

For instance, in the example shown, she tells you that her sum is 60. 

 

Divide the answer you hear by 4 (halve it twice) and subtract 4. 

 

The answer you get will be the top left number in the bock of numbers which means you can 

now tell your friend the four dates she selected.  

 

b) This time have a friend select a 3-by-3 block of dates and share with you the middle number 

in her block. 

 

For instance, in the example shown, she will tell you that the middle number is 22. 

 

Now race your friend to sum all nine selected numbers. You have the disadvantage as you know 

only one of the numbers. 

 

But you will win this race simply by multiplying middle number told to you by 9.  

22 × 9 = 22 × 10 − 22 = 220 − 22 = 198 

and lo and behold, 14 + 15 + 16 + 21 + 22 + 23 + 28 + 29 + 30 = 198! 
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Why is the sum of the nine numbers sure to be 9 times the middle number? 

 

Let’s now attend to TRICK 3. We start with an observation.   

 

Every positive integer can be written in the form 10𝑛 + 𝑎 where 𝑎 is a single digit that matches 

the final digit of the original number. 

 

For example, 623  has final digit 3 and we have 623 = 620 + 3 = 10 × 62 + 3. 

 

In the same way,  

4047 = 4040 + 7 = 10 × 404 + 7 

30 = 10 × 3 + 0 

8 = 10 × 0 + 8 

 

Practice 95.3 Convince me that every integer of two or more digits can be written in the form  

100𝑛 + 𝑎𝑏 

where “𝑎𝑏” represents a one- or two-digit number given by the final two digits of the original 

number.    

 

Along this line of thinking …  

 

Every three-digit number can be written in the form 100𝑎 + 10𝑏 + 𝑐 where 𝑎, 𝑏, and 𝑐 are the 

digits of the original number.  

  

For example, 623 = 600 + 20 + 3 = 100 × 6 + 10 × 2 + 3. 

 

In the same way,  

 

500 = 100 × 5 + 10 × 0 + 0 
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We’re now ready to make sense of TRICK 3. 

 

Call the three dice rolls 𝑎, 𝑏, and 𝑐. 

 

Multiple the first roll by five and add one:  5𝑎 + 1  

Double the result and add the second roll:   

   2(5𝑎 + 1) + 𝑏 = 10𝑎 + 2 + 𝑏 

 

Multiply by five and add one:  

  5(10𝑎 + 2 + 𝑏) + 1     = 50𝑎 + 10 + 5𝑏 + 1 

     = 50𝑎 + 5𝑏 + 11 

 Double result and add the third roll: 

  2(50𝑎 + 5𝑏 + 11) + 𝑐 = 100𝑎 + 10𝑏 + 22 + 𝑐 

 Subtract 22: 

     100𝑎 + 10𝑏 + 𝑐 

 

Yep! The final result is sure to be a three-digit number with digits the rolls of the dice.  
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MECHANICS PRACTICE 
 
Practice 95.4 Explain this mind-reading trick. 
 

Think of a number. 
Add 3 and multiply the result by 3. 
Add 6 and divide the result by 3. 
Subtract the number you first thought of.  
 
You are now thinking of the number 5. 
 

 
Practice 95.5 Please explain this mind-reading trick too. 
 

Roll two dice.  
 
Double the value of one of the rolls and add 4. 
Multiply the result by 5 and 1. 
Add the value of the second roll. 
Subtract 21 from your total. 
 
You are now thinking of a two-digit number whose digits are the values of your rolls. 
 

Practice 95.6 Choose a four-by-five block of twenty numbers from a calendar page. Explain why the 
sum of all twenty numbers is sure to be ten times the sum of the smallest and largest numbers in the 
block. (For instance, in the example shown the sum of all the selected dates is 10 × (4 + 29) = 330.)  
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Practice 95.7  
a) Write down a three-digit number and multiply it by 1,001. What do you notice?  
Explain what you notice. 
 
b) Write down a three-digit number and multiply it b 7 and then by 11 and then 13. What do you 
notice? Explain what you notice. 
 

 

Practice 95.8 The 1089 Trick  
 
Write down three digits not all the same and make the biggest three-digit number you can with them. 
Also make the smallest three-digit number you can.  (If you one or two of your digits are zero, you will 
technically have a two- or one-digit number here.) 
 
Subtract the small number from the large one.  
 
Reverse the digits of your answer and add that reversed answer to your answer. 
 
Without me seeing your work, I know you just got 1089. 

 

 
 
Why is 1089  sure to always result? 
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96. Arithmetic Hacks 
 
I remember learning in school a multiplication trick for multiplying two-digit numbers by 11. 

 

To multiply a two-digit number by 11, split apart the two digits and write their sum between 

them to produce a three-digit number. That number is the product you seek.  

 

 

 

If you are willing to adopt some Exploding Dots thinking, this trick seems to work even if the sum 

obtained is a two-digit number. 

 

 

 

Of course, the interesting question is: Why does this trick work? 

 

Explanation: We can see this result if we use the long multiplication algorithm on a general two-

digit number. 

 

 

For a more algebraic approach, we can observe as we saw last section that every two-digit 

number can be written in the form 10𝑎 + 𝑏 where 𝑎 and 𝑏 are the digits of the number. 
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So, we’re looking at the product 11 × (10𝑎 + 𝑏).  

 

This equals 110𝑎 + 11𝑏, which can be rewritten as  

 

100𝑎 + 10𝑎 + 10𝑏 + 𝑏 

That is, as 

100𝑎 + 10(𝑎 + 𝑏) + 𝑏 

 

We do indeed have 𝑎 hundreds, 𝑎 + 𝑏 tens, and 𝑏 ones as the answer to our product. 

 

Practice 96.1 Can you explain this strange method for multiplying by 11? 

 

To multiply a multi-digit number by 11, write a 0 at the beginning and at the 

end of the number. Reading left to right, sum the pairs of digits you see. They 

spell out the answer to the product. 

 

For example, 235 × 11 is 2585 

 

Practice 96.2 Have you ever noticed that if you multiply an even digit by 6 the result is half that 

digit and the digit placed together to make a two-digit number? 

 

  

This holds for all even numbers if you are willing to adopt the Exploding Dots mentality for 

thinking about and writing numbers.  

 

Explain why this pattern is true. 
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In this section we’ll go through some arithmetic patterns and hacks. These hacks aren’t worth 

memorizing and using. But it is fun to figure out why they work.  

 

The only “hacks” I do recommend are ones that promote a sense of common-sense and clever thinking 

that help avoid hard work when doing a numerical calculation.   

 

For instance, when faced with computing 

 

1637 − 498 

 

I naturally think “subtract 500 and then add 2 to compensate.” 

I am realizing in my mind that 1637 − 498 = 1637 − 500 + 2. The answer 1139 is apparent.  

 

 

Example: Compute 137 ÷ 5. 

 My Answer: I think to double the number and dividing that number by 10. 

1

5
× 137 =

1

10
× (2 × 137) 

 And I’ll double 137 the Exploding Dots way of Section 33.  

2 × 137 = 2|6|14 = 274 

 

So  

137 ÷ 5 = 27.4 

   

 

Example: Compute 96 × 32. 

 My Answer: Well, 100 × 32 = 3200. But this is too large by “four copies of 32.” 

 Doubling and doubling 32 gives 128. 

 

 Consequently 

96 × 32 = 3200 − 100 − 20 − 8 = 3072 
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Are you comfortable with each of these ideas? 

 

• To add 42 to a number, add 40 and then add 2. 

𝑁 + 42 = 𝑁 + 40 + 2 

• To subtract 97 from a number, subtract 100 and add 3. 

𝑁 − 97 = 𝑁 − 100 + 3 

• To multiply a number by 11, multiply the number by 10 instead and add the original number to 

the result. 

(10 + 1)𝑁 = 10𝑁 + 𝑁 

• To multiply a number by 9, multiply the number by 10 instead and subtract the original number 

from the result. 

(10 − 1)𝑁 = 10𝑁 − 𝑁 

• To multiply a number by 98, multiply it by 100 instead and subtract two copies of the original 

number. 

(100 − 2)𝑁 = 100𝑁 − 2𝑁 

• To divide a number by 4, halve the number and then halve again. 

1

4
× 𝑁 =

1

2
×

1

2
× 𝑁 

• To multiply a number by 5, multiply the number by 10 instead and halve the result. 

5 × 𝑁 =
1

2
× 10 × 𝑁 

 

 

Practice 96.3 Compute each of these quantities in your head!  

 

a) 1152 − 98   b) 978 + 39  c) 36,487 + 5,490 

 

d) 872 ÷ 4    e) 2,688 × 5  f) 38 × 9 

 

g) 55 × 62 
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Okay, now to some hacks that are interesting only because they present mysteries to crack.  

Why do they work?  

 

Multiplying Two Numbers Each Close to 𝟏𝟎 

 

To multiply two numbers that are each close to the number ten, write down the product and 

below each number the value you need to add to it to get 10. 

 

For example, in computing 7 × 8  I’d write a 3 under the 7 and a 2 under the 8. 

 

Write down the difference of the two digits along the southeast diagonal—the first number of 

the product and the number you wrote down below the second number of the product.  

That difference is the first digit of your answer. 

 

The second digit is the product of the two smaller numbers you wrote down. 

 

 

Here are some more examples. They show us that  

9 × 7 is 6 tens and 3 ones: 63 

12 × 13 is 15 tens and 6 ones: 156 

14 × 8 is 12 tens and −8 ones: 112 

 

 

What’s going on? 
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Let’s start by naming our two numbers that are each “close to ten” in a way that makes it clear how far 

off from ten each are: 10 + 𝑎 and 10 + 𝑏. 

 

So, we are trying to work out the product  

(𝟏𝟎 + 𝒂)(𝟏𝟎 + 𝒃) 

 

Now let’s follow the procedure of the hack with these two abstract numbers. 

 

The difference we need is 

10 + 𝑎 − (−𝑏) = 10 + 𝑎 + 𝑏 

The product is: 

(−𝑎) × (−𝑏) = 𝑎𝑏 

So, the two-digit number the method gives is 

 

𝟏𝟎 × (𝟏𝟎 + 𝒂 + 𝒃) + 𝒂𝒃 

 

Is this the product of the two original numbers in disguise?   

 

We can rewrite our product:  

(10 + 𝑎)(10 + 𝑏) = 100 + 10𝑎 + 10𝑏 + 𝑎𝑏 

And we can rewrite the expression from the hack:  

 

10(10 + 𝑎 + 𝑏) + 𝑎𝑏 = 100 + 10𝑎 + 10𝑏 + 𝑎𝑏 

 

Ahh! They are indeed the same quantity in disguise! The hack is sure to always work. 
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What I love about algebra is that it frees us up from working with specific numbers and a feeling of 

“specialness” to certain numbers. 

 

Practice 96.4 Suppose we wish to multiply two numbers that are each close to 𝑁 (where 𝑁 

could be 10, as before).  

 

What does the technique of this hack say is the value of (𝑁 + 𝑎) × (𝑁 + 𝑏)? 

 

 

 

It is tempting the say in this problem that the hack suggests that the product is a two-digit answer with 

first digit 𝑁 + 𝑎 + 𝑏 and second digit 𝑎𝑏, that the answer is   

 

10 × (𝑁 + 𝑎 + 𝑏) + 𝑎𝑏 

 

But this is suspicious! The number 10 just appeared and there should be no ten-ness in this problem! 

 

Okay. Let’s rethink this.  

 

We’re looking for a disguised version of the product  

 

(𝑵 + 𝒂)(𝑵 + 𝒃) 

 

So, let’s play with this expression and see if we can make the difference 𝑁 + 𝑎 + 𝑏 and product 𝑎𝑏 

appear in what we seem. 
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It seems natural to expand (𝑁 + 𝑎)(𝑁 + 𝑏) and write is as  

 

𝑁2 + 𝑎𝑁 + 𝑏𝑁 + 𝑎𝑏 

I see the product 𝑎𝑏.  

 

And I see the difference 𝑁 + 𝑎 + 𝑏 too if I factor out 𝑁 from the first three terms!  

 

𝑁 × (𝑁 + 𝑎 + 𝑏) + 𝑎𝑏 

 

 

 

 

The answer is a two-digit number, but a two-digit number in base 𝑁! 
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Multiplying Two Numbers Each Close to 𝟏𝟎𝟎 

 

Let’s take 𝑁 to be 100 in the previous hack. 

 

To compute the product of two numbers each close to 100, write down the product, and then 

below each term in the product the value you need to add to it to get 100. 

Write down the difference of the two numbers along the southeast diagonal, and to the right of 

that difference, the product of the two smaller numbers you wrote down as a two-digit answer. 

 

Now read off the product you seek. 

 

 

 

 

 

Practice 96.5 How does one make sense of the result of this method for 103 × 98? 

 

 

 

  



 
 
 

254 
 

 

Multiplying Two Two-digit Numbers with the Same First Digit and Second Digits that Add to 𝟏𝟎 

How’s that for an absurdly specific situation! 

 

But if you find yourself in a position of trying to compute a product like one of the following, and don’t 

want to use a calculator, and don’t want to use the area-model or standard multiplication, then here’s 

the trick for you! 

 

 

 

To multiply two two-digit numbers with the same first digit 𝑁 compute 𝑁 × (𝑁 + 1) and 

compute the product of the two second digits as a two-digit answer and write those two answers 

in juxtaposition.  ` 

 

 

 

Practice 96.6 Does this method seem to method work for the product of any two integers that 

are identical except for their final digits, which happen to sum to 10? 
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What’s going on here?  

 

We have two numbers identical except for their final digits which add to 10. If the final digit of one is 𝑎, 

then the final digit of the is 10 − 𝑎.  

 

47 = 10 × 4 + 7  and  43 = 10 × 4 + (10 − 7) 

82 = 10 × 8 + 2  and  88 = 10 × 8 + (10 − 2). 

51 = 10 × 5 + 2  and  59 = 10 × 5 + (10 − 1).  

123 = 10 × 12 + 3  and  127 = 10 × 12 + (10 − 3). 

 

So, we have a number 10𝑁 + 𝑎 with final digit 𝑎 and a second number that is identical, but with final 

digit is 10 − 𝑎 . It’s 10𝑁 + (10 − 𝑎). 

 

We are trying to work out their product:  

(𝟏𝟎𝑵 + 𝒂) × (𝟏𝟎𝑵 + 𝟏𝟎 − 𝒂) 

 

This is the same as  

100𝑁2 + 100𝑁 + 10𝑎 − 𝑎2 

 

Let’s look 100𝑁2 + 100𝑁 and look at 10𝑎 − 𝑎2. 

 

 

In 100𝑁2 + 100𝑁 there is a common factor of 100 and a common factor of 𝑁 and so we can rewrite it 

as 100𝑁(𝑁 + 1). 

 

In 10𝑎 − 𝑎2 there is a common factor of 𝑎 and so we can rewrite it as 𝑎(10 − 𝑎). 

So, our product is  

100 × 𝑁(𝑁 + 1) + 𝑎 × (10 − 𝑎) 

 

Look! We computed 𝑁 × (𝑁 + 1), multiplied it by 100, which “pushes” its digits two places to the left 

leaving space to write the product 𝑎 × (10 − 𝑎), the product of the two final digits. 

 

This trick is always sure to work, even if 𝑁 itself has more than one digit. 

Whoa! 
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Squaring a Number that Ends with a 𝟓  

To square a number is to multiply the number by itself. 

 

If that number ends has final digit 5, then we are multiplying two identical numbers whose final digits 

add to 10. We can use the previous hack!  

 

 

To square a number that ends with a five, delete the final digit 5 to leave a smaller number.  

Call it 𝑁. 

Compute 𝑁 × (𝑁 + 1) and then tack on the digits 2 and 5 to that answer. 

 

(Do you see how this is an appropriate rephrasing of the previous hack for this special case?) 

 

 

 

There seem to be plenty of hacks on the internet for squaring numbers. (It is not always clear how 

practice they are!)  

 

Here are a few for your amusement.  

 

Practice 96.6 Squaring a Number that ends with a 𝟏 

Can you detect a pattern? Can you put the pattern into words?  

Can you then explain why the pattern holds? 

 

𝟐𝟏𝟐 = 𝟐𝟎 × 𝟐𝟏 + 𝟐𝟏 = 420 + 11 = 𝟒𝟒𝟏 

𝟑𝟏𝟐 = 𝟑𝟎 × 𝟑𝟏 + 𝟑𝟏 = 930 + 31 = 𝟗𝟔𝟏 

𝟒𝟏𝟐 = 𝟒𝟎 × 𝟒𝟏 + 𝟒𝟏 = 1640 + 41 = 𝟏𝟔𝟖𝟏 

𝟓𝟏𝟐 = 𝟓𝟎 × 𝟓𝟏 + 𝟓𝟏 = 2550 + 51 = 𝟐𝟔𝟎𝟏 
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Practice 96.7 Squaring a Number that ends with a 𝟗 

Can you detect a pattern? Can you put the pattern into words?  

Can you then explain why the pattern holds? 

𝟏𝟗𝟐 =     𝟐𝟎𝟐 − (𝟏𝟗 + 𝟐𝟎) = 400 − 40 + 1           =   𝟑𝟔𝟏 

𝟐𝟗𝟐 =     𝟑𝟎𝟐 − (𝟐𝟗 + 𝟑𝟎) = 900 − 60 + 1          =    𝟖𝟒𝟏 

𝟑𝟗𝟐 =          𝟒𝟎𝟐 − (𝟑𝟗 + 𝟒𝟎) = 1600 − 80 + 1   = 𝟏𝟓𝟐𝟏 

𝟒𝟗𝟐 =            𝟓𝟎𝟐 − (𝟒𝟗 + 𝟓𝟎) = 2500 − 100 + 1 = 𝟐𝟒𝟎𝟏 

 

Practice 96.8 Squaring a Number near 𝟓𝟎 

Can you detect a pattern? Can you put the pattern into words?  

Can you then explain why the pattern holds? 

𝟒𝟕𝟐 =      𝟐𝟓𝟎𝟎 − 𝟑𝟎𝟎 + 𝟑𝟐         = 𝟐𝟐𝟎𝟗 

𝟒𝟓𝟐 =     𝟐𝟓𝟎𝟎 − 𝟓𝟎𝟎 + 𝟓𝟐          = 𝟐𝟎𝟐𝟓 

𝟒𝟔𝟐 =     𝟐𝟓𝟎𝟎 − 𝟒𝟎𝟎 + 𝟒𝟐          = 𝟐𝟏𝟏𝟔 

𝟒𝟎𝟐 =          𝟐𝟓𝟎𝟎 − 𝟏𝟎𝟎𝟎 + 𝟏𝟎𝟐 = 𝟏𝟔𝟎𝟎 

Does the pattern persist for numbers “under 50 by a negative amount”?  

𝟓𝟐𝟐 =      𝟐𝟓𝟎𝟎 + 𝟐𝟎𝟎 + 𝟐𝟐 = 𝟐𝟕𝟎𝟒 

𝟓𝟑𝟐 =      𝟐𝟓𝟎𝟎 + 𝟑𝟎𝟎 + 𝟑𝟐 = 𝟐𝟖𝟎𝟗 

𝟓𝟗𝟐 =      𝟐𝟓𝟎𝟎 + 𝟗𝟎𝟎 + 𝟗𝟐 = 𝟑𝟒𝟖𝟏 
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Finding Square Roots of Three- and Four-digit Perfect Squares 

Recall from section 79 that the square root of a positive number 𝑁 is the side length of a square of area 

𝑁. 

 

Consequently, it is a positive number that multiplies by itself to give the value 𝑁.  

 

For example, √49 = 7. 

 

Example: Between which two consecutive integers does √105  lie? 

 

Answer: We recognize that 105 lies between 100 (which is 10 × 10) and 121 (which is 

11 × 11). Consequently, 

√100 < √105 < √121 

10 < √105 < 11 

 

People call an integer a perfect square if it equals an integer squared. (So, the term “perfect square” is 

just another name for a square number, as per Chapter 2.) For example, 100 and 121 are perfect 

squares.  

 

A perfect square has a square root that is an integer. So, if you recognize between which two perfect 

squares an integer lies, then you have an estimate of the value of its square root.  

  

Example: Show that √1893 has a value between 40 and 50. 

 

Answer: We have 40 × 40 = 1600 and 50 × 50 = 2500. 

So,  

 

√1600 < √1893 < √2500 

40 < √1893 < 50 
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Practice 96.9: The number 4761 is a perfect square.  

Knowing this, deduce that its square root is a two-digit number with first digit 6. 

 

Practice 96.10: The number 7569 is a perfect square.  

What is the first digit of its square root? 

 

These practice exercises are suggesting how to determine the first digit of the square root of a four-digit 

number known to be a perfect square.  

 

Knowing the basic square numbers seems to be important. 

 

12 = 1 

22 = 4 

32 = 9 

42 = 16 

52 = 25 

62 = 36 

72 = 49 

82 = 64 

92 = 81 

The we can deduce that 40 × 40 = 1600, for example. So,  

 

√1600 = 40 

We also see 

√8100 = 90 

√400 = 20 

√2500 = 50 

√3600 = 60 

and so on. 

 

You know the square roots of  𝟏𝟎𝟎,  𝟒𝟎𝟎,  𝟗𝟎𝟎,  𝟏𝟔𝟎𝟎,  𝟐𝟓𝟎𝟎,  𝟑𝟔𝟎𝟎,  𝟒𝟗𝟎𝟎,  𝟔𝟒𝟎𝟎,  and 𝟖𝟏𝟎𝟎. 
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But how do we determine the second digit of the square root of a four-digit perfect square?  

 

Well, the natural answer is to pull out a calculator and use the square root button!  

 

But since the algebra hacks one finds on the internet presume we don’t live in the 21st century, here’s a 

deeply mysterious procedure that allows you to figure this out with pencil and paper. It works for three-

digit perfect squares too. 

To find the square root of a four- or three-digit number known to be a perfect square. 

 

1. Find the first digit of the square root by identifying between which two of these perfect 

squares it lies: 𝟏𝟎𝟎,  𝟒𝟎𝟎,  𝟗𝟎𝟎,  𝟏𝟔𝟎𝟎,  𝟐𝟓𝟎𝟎,  𝟑𝟔𝟎𝟎,  𝟒𝟗𝟎𝟎,  𝟔𝟒𝟎𝟎,  𝟖𝟏𝟎𝟎. 

Call that first digit 𝑁. 

 

2. Look at the final digit of the number we’re working with.  

 

If it is a 0, then the square root is the two-digit number 10𝑁. 

If it is a 5, then the square root is the two-digit number 10𝑁 + 5.  

 

If it is a 1, then the square root is either 10𝑁 + 1 or 10𝑁 + 9.  

If it is a 4, then the square root is either 10𝑁 + 2 or 10𝑁 + 8. 

If it is a 9, then the square root is either 10𝑁 + 3 or 10𝑁 + 7. 

If it is a 6, then the square root is either 10𝑁 + 4 or 10𝑁 + 6. 

 

3. To figure out which of the two options it is, work out 𝑁 × (𝑁 + 1) × 100. 

If the original number is bigger than this value, choose the larger option for the square root. 

If the original number is smaller than this value, choose the smaller option for the square 

root.  

Whoa! 

 

Here’s a worked example.  

Example: The number 1444 is a perfect square. Kindy find its square root without a calculator. 

Answer: Here goes.  

1. We have  

√900 < √1444 < √1600 

30 < √1444 < 40 

 

The square root is a number in the 30s. The first digit is 𝑵 = 𝟑. 
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2. The number 1444 ends with a 4, so, allegedly its square root is either 32 or 38. 

 

Rather than quickly square each of these to find out which, we continue the mysterious ways. 

 

3.  We have 𝑁 × (𝑁 + 1) × 100 = 3 × 4 × 100 = 1200. 

 

Our number 1444 is bigger than 1200, so we choose the bigger option. 

 

√𝟏𝟒𝟒𝟒 = 𝟑𝟖 

 

Let’s do another one.  

 

Example: The number 529 is a perfect square. Please find its square root without a calculator. 

Answer:  

1. We have 

√400 < √529 < √900 

20 < √529 < 30 

 

The square root is a number in the 20s. It’s first digit is 𝑵 = 𝟐. 

 

2. Since 289 ends with a 9, the square root is either 23 or 29. 

 

3. We have 𝑁 × (𝑁 + 1) × 100 = 2 × 3 × 100 = 600. 

 

Our number 529 is smaller than this, so we choose the smaller option. 

√𝟓𝟐𝟗 = 𝟐𝟑 

 

Practice 96.11  If this procedure delights you, use it to work out the square roots of these 

perfect squares. Check your answers with a calculator.  

 

a) 7569   b) 5329  c) 2025  d) 961    e) 2916 

 

We’ll leave explaining this bizarre method for computing the square roots of perfect squares to the 

Musings of this section. All will be revealed there if you want to know.  
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MUSINGS 
 
Musing 96.12 Is there a pattern to be discovered and proved about multiplying two-digit numbers by 
99? 

 
 

Musing 96.13 Watch out! Not every arithmetic trick you see on the internet is real. 
 
For example, I found this “trick” (in the real sense of the word!) as a suggested shortcut for finding the 
square roots of numbers. 

 
 
To find the square root of a number, just sum its digits and subtract 2.  

 
 
Here are some examples. Each statement is mathematically correct. 
 

√25 = 2 + 5 − 2 = 5 

√64 = 6 + 4 − 2 = 8 

√4 = 4 − 2 = 2 

√289 = 2 + 8 + 9 − 2 = 17 
 
Can you find another example where this trick, by luck, happens to work?  
 

 

MECHANICS PRACTICE 
 
As I said earlier, the only arithmetic “tricks” one needs are those that arise from common-sense 
thinking about using the structure of numbers to avoid hard work. For instance, if I needed to add 98 
to a number, I’d personally add 100 and subtract 2. 
 
Practice 96.14 Kindly work out each of these quantities with flexible and efficient thinking. 
 
a) 173 + 298          b) 1000 − 273         c) A quarter of 72       d) 15% of $10.20.  
e) 78 × 99                f) 5 × 484                 g) 25 × 484                 h) 17 + 29 + 83 + 71  
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OPTIONAL MUSING: Explaining the Square Root Hack  
 
Let’s now explain that mysterious method for determining the square roots of three- and four-digit 
numbers known to be perfect squares. (Perhaps review that method now to remind yourself of it.)  
 
We’ll do this using a series of observations.  

 
Observation 1:  
12 = 1 and 92 = 81 both end with a 1, and 1 + 9 = 10. 
22 = 4 and 82 = 64 both end with a 4, and 2 + 8 = 10. 
32 = 9 and 72 = 49 both end with a 9, and 3 + 7 = 10. 
42 = 16 and 62 = 36 both end with a 6, and 4 + 6 = 10. 
 
And 52 = 25 “matches with itself” and ends with a 5. 
(Technically 02 = 0 also “matches with itself” and ends with a 0.) 
 

 
Some exercises next to get to our second observation.  
 
Musing 96.15  

a) Show that multiplying a number that ends with a 1 by itself is sure to give an answer that 
ends with a 1 (the same as 12 does). 
 
b) Show that multiplying a number that ends with a 2 by itself is sure to give an answer that 
ends with a 4 (the same as 22 does). 
 
c) Show that multiplying a number that ends with a 4 by itself is sure to give an answer that 
ends with a 6 (the same as 62 does). 
 
d) Show that multiplying a number that ends with a 9 by itself is sure to give an answer that 
ends with a 1 (the same as 92 does). 
 

If you had the patience to check every possibility, you’d see 
 
Observation 2: 
If a number ends with the digit 𝑎, then its square has the same final digit as 𝑎2 does. 
 

This observation has logical consequences. 
 

If a perfect square ends with a 1, then its square root ends with a 1 or a 9. 
 
Reason: We’ve just seen that only numbers that end with a 1 or 9 will multiply by themselves 
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to give an answer that ends with a 1. 
  
 
If a perfect square ends with a 5, then its square root ends with a 5. 
 
Reason: We’ve just seen that only numbers that end with a 5 will multiply by themselves to 
give an answer that ends with a 5. 
 
If a perfect square ends with a 6, then its square root ends with a 4 or a 6. 
 
Reason: We’ve just seen that only numbers that end with a 4 or 6 will multiply by themselves 
to give an answer that ends with a 6. 

 
And so on! 
 
Here’s what we have so far:  
 

Summary:  
If a perfect square ends with 0, its square root also ends with 0.  
If a number ends with 5, its square root also ends with 5.  
 
If a perfect square ends with 1, its square root also ends with either 1 or 9. 
If a perfect square ends with 4, its square root also ends with either 2 or 8. 
If a perfect square ends with 9, its square root also ends with either 3 or 7.  
If a perfect square ends with 6, its square root also ends with either 4 or 6. 
 
 

Musing 96.16 Explain why no perfect square can end with a 2, 3, 7, or 8. 
 
 
Let’s now work with a specific example to see how these observations apply.  
 
Let’s work out the square root of 7744, which happens to be a perfect square. 
 
 

Step 1: We observe 
6400 < 7744 < 8100 

so 

80 < √7744 < 90 
 

Thus, √7744  is a number in the 80s. It’s first digit is sure to be 𝑁 = 8. 
 
 
Step 2: Our number 7744 ends with a 4. Its square root ends either with a 2 or an 8. 
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We deduce that the square root of 7744 is thus either 82 or 88. 
 
 
Step 3:  One of these options is larger than 85 and one is smaller.  
 
We can determine which to choose by working out 852 and seeing if 7744  is larger than this 
(in which case 7744 is 882) or smaller (in which case 7744 is 822). And we have a hack for 
squaring a number than ends with a 5! 
 

852 = "8 × 9" | 25 = 7225 
 
Our number is larger than this so 

√7744 = 88 
 
The key parts to step 3 are:  
 

i) Whenever we have a choice between two possible square roots, one option will have 
second digit smaller than 5 and the other larger than 5. (We see this in the Summary 
statement.)  
 
ii) We have a hack for squaring a two-digit number with fist digit 𝑁 and second digit 5. Its 
square is  

𝑁 × (𝑁 + 1) × 100 + 25 
  
 
So, we just need to compare our given number with this value to determine whether we have the 
larger or smaller potential square root.  
 
But as we’re working with large numbers, the “+25” part of this value will be immaterial. We can 
compare our given number just with  
 

𝑁 × (𝑁 + 1) × 100 
 
 
Whew!  That ties things up. 
 
But what an involved and ingenious hack!  

(But still .. I’d rather just ask Siri or Alexa or Google to find the square root of a given number.)   
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267 
 

 

97. An Antiquated Hack: Rationalizing the Denominator 
 

Back in my high-school days in Australia (the early 80s) we did not have calculators.  

 

Instead, we were given booklets with tables of values. For example, the “square roots pages” listed the 

decimal values of the square roots of the first one-hundred or so integers, rounded to three decimal 

places. 

 

 

Sometimes when working on a mathematics problem, we’d obtain answers that involved the square 

roots of numbers. Such answers are good and fine mathematically. But if you are working on a realistic 

problem, knowing that a bridge is 12√11 meters long, say, is not that helpful. A decimal value would be 

of better practical use.  

 

So, in this situation we were required to look at the value of √11 in our tables and 

compute the appropriate arithmetic by hand.  

 

We’d see that our answer is close to 39.8 meters.  
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This work is tedious, but doable.  

 

But there are some forms of quantities involving square roots whose decimal values are truly miserable 

to compute by hand. 

 

Example: What is approximate value of   
1

√2
   as a decimal?   

Answer Attempt 1: According to our table, √2 = 1.414 up to three decimal places.  

To compute 
1

√2
 we need to compute 

1

1.414
.  

 

To avoid decimals within fractions, let’s multiply top and bottom each by 1000 and work  

with 
1000

1414
.  (According to Chapters 5 and 6, this does not change the value of the fraction.)  

   

This is a long division problem. 

 

Ick!  

 

Fractional quantities with square roots of values in the denominator are always tough to covert to 

decimal approximations by hand.   

 

But there is a hack. 

 

If wish find a the decimal value of a fractional quantity with denominator the square root of an 

awkward number, try multiplying the top and bottom of that quantity by that square root 

number.  

 

Back to our problem. 

 

Answer Attempt 2: Rather than work with 
1

√2
, let’s try working with  

1 × √2

√2 × √2
=

√2

2
 



 
 
 

269 
 

 

 

We know from our work with fractions this has not changed the value of our quantity. 

  

Now, the decimal approximation to 
√2

2
 is  

1.414

2
 

   

I see this as “half of fourteen and half of fourteen.” 

 

We have  
1

√2
= 0.707 

 

at least to some degree of accuracy. 

 

Practice 97.1 What is the approximate decimal value of  
1

√10
 ?  

 

Rewriting  

𝒂

√𝒃
 

 as  

𝑎 × √𝑏

√𝑏 × √𝑏
=

𝒂√𝒃

𝒃
 

 

is a fabulous aid IF you are required to work out the decimal value of quantity by hand, using tables of 

given values for square roots.  

 

This process became known as rationalizing the denominator and it was commonly taught in schools 

before calculators were invented.  

And it remained commonly taught in schools all through the 1980s, the 1990s, the 2000s, and you will 

even see it still taught to this day. In fact, many school curricula regard leaving square root numbers in 

the denominator of a fractional quantity as mathematically wrong and insist students always rationalize 

the denominator. This is an absurd thing to insist upon. 
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Practice 97.2 a) Compute  
1

√10
  on a calculator by pressing 1 then ÷ then √ then 10 and then 

enter.  

b) Compute 
√10

10
 on a calculator by pressing √ then 10 then ÷ then 10 and then enter. 

c) Was significant time saved by working with 
√10

10
 rather than 

1

√10
?   

 

 

Practice 97.3 Please be naughty and rationalize the numerator of  

√30

5
 

 

 

MECHANICS PRACTICE 
 
Practice 97.4 Match time! 
Match each quantity on the left with a quantity of the same value on the right.  
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98. Expected Schoolbook Work on Square Roots 
 

While we are here, we might as well detail everything a typical algebra curriculum expects students to 

know about the arithmetic of the square roots of numbers.  

 

The square root of a positive number 𝑁 is a number √𝑁 that multiplies by itself to give 𝑁. 

√𝑵 × √𝑵 = 𝑵 

Recall from section 79 when using the radix symbol √  from geometry all the quantities discussed must 

be positive (or zero, that is allowed too).  

 

Practice 98.1 Write down the values of each of these quantities.  

a) √225  b) √1   c) √0  d) √
1

225
  e) √

169

225
 

   

The fifth example here illustrates a schoolbook rule.  

 

We know that √169 = 13 and √225 = 15 and so you likely answered that 

√
169

225
=

13

15
 

We do indeed have 
13

15
×

13

15
=

169

225
. 

 

It looks like  

√
𝒂

𝒃
=

√𝒂

√𝒃
 

for non-negative numbers 𝑎 and 𝑏 with 𝑏 not zero. 

We can prove that this is so in general by checking if 
√𝑎

√𝑏
 multiplies by itself to give the answer 

𝑎

𝑏
 . 

 

Check: It does!  

√𝑎

√𝑏
×

√𝑎

√𝑏
=

√𝑎 × √𝑎

√𝑏 × √𝑏
=

𝑎

𝑏
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Practice 98.2 Make each of these quantities look friendlier. 

 

a) 
√40

√4
    b) 

√125

√5
    c) 

√30

√3000
   d) √80 ÷ √5  e) 

√0.01

√100
   

 

 

Practice 98.3 Find four values for 𝑏 that make 
√36

√𝑏
 an integer. 

 

The answer to Problem 98.2 d) suggests something interesting. We have  

√80 ÷ √5 = √80 ÷ 5 

 

(After all, the left side is just 
√80

√5
 and the right side is √

80

5
, and we know these are the same.)  

 

The schoolbook rule could be rewritten  

 

√𝒂 ÷ 𝒃 = √𝒂 ÷ √𝒃 

 

showing that square roots and division “play nice” together. 

 

This makes me wonder: Do square roots play nice with multiplication? With addition? With subtraction? 

 

Question: Are any of the following always true? 

 

√𝒂 × 𝒃 = √𝒂 × √𝒃 

√𝒂 + 𝒃 = √𝒂 + √𝒃 

√𝒂 − 𝒃 = √𝒂 − √𝒃 

 

 Practice 98.4 On a calculator, work out √5 and √2 and test if any of these statements are true. 

a) √5 × √2 equals √5 × 2 

b) √5 + √2 equals √5 + 2 

c) √5 − √2 equals √5 − 2 
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 Practice 98.5 Can you find any value for 𝑎 and any value for 𝑏 for which  

√𝑎 + 𝑏 

happens to equal   

√𝑎 +  √𝑏 ? 

 

  

Practice 98.6 Can you find any value for 𝑎 and any value for 𝑏 for which 

√𝑎 − 𝑏 

happens to equal   

√𝑎 −  √𝑏 ? 

 

I am sure you have a conjecture.  

 

 Square roots and multiplication play nicely together: √𝒂 × 𝒃 = √𝒂 × √𝒃 

 Square roots and addition DO NOT play nicely together. 

 Square roots and subtraction DO NOT play nicely together. 

 

Actually, Problem 98.4 parts b) and c) have established the last two claims: square roots are not friends 

with addition and not with subtraction. 

 

But we can prove the first claim is true.  

 

Statement: For two positive numbers 𝑎 and 𝑏 (or possibly zero) we have that √𝑎 × √𝑏 is 

√𝑎 × 𝑏, the square root of 𝑎 × 𝑏.  

 

Reason: Let’s check. Does multiplying √𝑎 × √𝑏 by itself give 𝑎 × 𝑏? 

 

√𝑎 × √𝑏 × √𝑎 × √𝑏 = √𝑎 × √𝑎 × √𝑏 × √𝑏 = a × 𝑏  

 It does!  
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We now have two schoolbook rules about square roots. 

 

√
𝒂

𝒃
=

√𝒂

√𝒃
 

 

√𝒂 × 𝒃 = √𝒂 × √𝒃 

 

 

Example: Make √9𝑥2 look friendlier. 

 

Answer: Right away I can see that 3𝑥 × 3𝑥 = 9𝑥2 and so  

 

√9𝑥2 = 3𝑥 

 

(We are assuming 𝑥 is not a negative number. We can’t have a negative answer.)  

 

If I didn’t happen to see this right off the bat, we could use the fact that square roots and 

multiplication play nice. 

 

√9𝑥2 = √9 × √𝑥2 = 3 × 𝑥 = 3𝑥 

 

 (Again, we are assuming that 𝑥 is not a negative number.) 

 

 

Practice 98.7  

a) Give a value for 𝑥 for which √𝑥2 equals 𝑥. 

b) Give a value for 𝑥 for which √𝑥2 does not equal 𝑥. 
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Example: Between which two consecutive integers does 3√7 lie?  

 

Answer: We could answer this by using a calculator or looking at the table of square root values 

in the previous section. 

 

But here is another approach:  

 

Think of 3 as √9. Then we have  

 

3√7 = √9 × √7 = √63 

 

This is tad shy of √64 = 8. So, 3√7 is between 7 and 8, quite close to 8. 

 

 

A Comment on “Simplify” 

Algebra books say that 3√7  is the “simplified form” of √63. 

 

I personally think that √63 looks much friendlier than 3√7 , and certainly this form of number was much 

more useful to us in the previous problem. 

The command “simplify” is dangerous. It is dependent on what one wants to do with the number and is 

often meaningless as a stand-alone command. 

 

  

Example: Show that √180  is the same as 6√5. 

 

Answer:  We have that 180 = 18 × 10 = 2 × 9 × 2 × 5 = 36 × 5. 

So 

√180 = √36 × 5 = √36 × √5 = 6√5 

 

 

Practice 98.8 Write √8400 in the form 𝑎√𝑏 with 𝑎 and 𝑏 integers and 𝑎 as large as possible. 
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There are some special instances for which we can add and subtract quantities expressed as square 

roots. 

Example: Show that √5 + √20 equals √45. 

Answer: The only thing I can think to do with the sum is to try rewriting √20 within it. 

We have 

√20 = √4 × 5 = 2√5 

 Then √5 + √20 is  

√5 + 2√5 

 

 There is a common factor of √5 to play with here. 

 

 

√5 + 2√5 = √5(1 + 2) = 3√5 

 

 Can we turn this into √45? 

 Yes! 

3√5 = √9 × √5 = √45 

 

Practice 98.9 Write each of these quantities as the square root of a single number. 

a) 5√3 + 2√3 

b) 5√3 − 2√3 

c) √160 + √90 

d) √2 + √8 

e) √63 − √28 − √7 

 

There is a “cheat” way to answer each of these questions. We do have that  

5√3 + 2√3 = √(5√3 + 2√3)2 

for instance!  

Practice 98.10 Why won’t this “cheat” work for √18 − √32? 
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Practice 98.11 This picture shows a square of area 5 and a square of area 20 sitting inside a 

square of area 40. No square is tilted.  

Is this picture physically possible? 
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MUSINGS 
 

Musing 98.12 We saw that √𝑎 + 𝑏 usually does not equal √𝑎 + √𝑏.  
For example, 

 

√9 + 16 = 5    but    √9 + √16 = 7 
 
Only when one of numbers is zero do we have equality. For instance,  
 

√3 + 0 = √3 + √0 
 

In what follows, assume that neither 𝑎 nor 𝑏 is zero. 
 
Using a calculator … 
 

a) Is √3 + 5 larger or smaller than √3 + √5? 

b) Is √10 + 7 larger or smaller than √10 + √7? 

c) Can you find two positive numbers 𝑎 and 𝑏 with √𝑎 + 𝑏  larger than √𝑎 + √𝑏? 
 
d) OPTIONAL: Do you know the Pythagorean Theorem? If so, what is a formula for the length of the 
hypotenuse of this right triangle? 

 
 

 
 

What does this picture say about the value of √𝑎 + √𝑏 compared to the value of √𝑎 + 𝑏  ? 
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MECHANICS PRACTICE 
 

Practice 98.13 Write each of these quantities in the form 𝑎√𝑏 with 𝑎 and 𝑏 integers and 𝑎 as large as 
possible. 
 

a) √7200        b) √1000             c) √6125 
 
 
Practice 98.14 Between which two consecutive integers do each of the following quantities lie? 
 

a) 2√3        b) 4√5             c) 3√8 
 
 
Practice 98.15 Which of the following equals an integer? 
 

a) √250 − 5√10        b) √
25

0.04
             c) √8 ÷ √2 

 
 
Practice 98.16 Find all the integers 𝑏 that make the following quantity an integer. 
 

√48

√𝑏
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99. The Difference of Two Squares 
 

Here’s a cute pattern. 

 

Choose an integer on the number line.  

Multiple the two numbers either side of it.  

That product is always one less than the square of your chosen number. 

 

 

 

Some more examples: 

 

100 × 102 = 𝟏𝟎, 𝟐𝟎𝟎     and      1012 = 𝟏𝟎, 𝟐𝟎𝟏 

17 × 19 = 𝟑𝟐𝟑    and     182 = 𝟑𝟐𝟒 

774,092 × 774,094 = 𝟓𝟗𝟗, 𝟐𝟏𝟗, 𝟗𝟕𝟐, 𝟔𝟒𝟖     and    7740932 = 𝟓𝟗𝟗, 𝟐𝟏𝟗, 𝟗𝟕𝟐, 𝟔𝟒𝟗 

 

 

We seem to have 

𝑁2 = (𝑁 − 1)(𝑁 + 1) + 1 

 

 

“The square of a number is one more than the product of the number one below it and one above it.” 
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Practice 99.1 Make a conjecture about the square of a number and the product of the number 2 

below it and the number 2 above it. Experiment with some different values.  

Also make a conjecture about the square of a number and the product of the number 3 below it 

and the number 3 above it. 

 

 

 

If you play with this, you might come to think: 

 

The square of a number 𝑁 is 𝑘2  more than the product of the number 𝑘 below it and the 

number 𝑘 above it.   

𝑁2 = (𝑁 − 1)(𝑁 + 1) + 1 

𝑁2 = (𝑁 − 2)(𝑁 + 2) + 4 

𝑁2 = (𝑁 − 3)(𝑁 + 3) + 9 

𝑁2 = (𝑁 − 4)(𝑁 + 4) + 16 

⋮ 

𝑁2 = (𝑁 − 𝑘)(𝑁 + 𝑘) + 𝑘2 

 

If this is true, it leads to another arithmetic hack. 
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Squaring a number that is near 100 

Suppose you wish to compute 972 in your head for some reason.  

 

Now 97 is three less than 100, which is an easy number to work with. Let’s multiply the numbers three 

less and three more than 97 and add 9. 

 

972 = (97 − 3)(97 + 3) + 9 

972 = 94 × 100 + 9 

972 = 9409 

 

In the same way, 102 is two away from 100. So, we have 

1022 = (102 − 2)(102 + 2) + 4 

1022 = 100 × 104 + 4 

1022 = 10,404 

  

Practice 99.2 Use this trick to compute 

a) 992        b) 1042  c) 922  d) 9952                      

 

 

Of course, we need to demonstrate that what we are observing and concluding is true. 

 

Practice 99.3 a) Draw and chop up a rectangle to show that (𝑁 − 𝑘)(𝑁 + 𝑘) equals 𝑁2 − 𝑘2. 

b) What then is the value of (𝑁 − 𝑘)(𝑁 + 𝑘) + 𝑘2? 

 

Practice 99.4 Is  

90,564,3872 − 4 

 

 a prime number? How do you know? 
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In problem 99.3 you showed  

 

𝑵𝟐 − 𝒌𝟐 = (𝑵 − 𝒌)(𝑵 + 𝒌) 

 

This is called the difference of two squares formula. It shows that the difference of two square numbers 

can be written as the product of two factors.    

 

 

School books have questions of the following ilk: 

Please factorise 4𝑥2 − 𝑦2   

or 

Please factor 4𝑥2 − 𝑦2. 

 
(In the U.S. the word “factor” is used both as a noun and a verb.) 
 
 
Students are expected to recognize that the expression is a difference of two squares and so apply the 

difference of two squares equation. 

 

4𝑥2 − 𝑦2 = (2𝑥)2 − 𝑦2 

                                = (2𝑥 − 𝑦)(2𝑥 + 𝑦) 

 

Practice 99.5  

a) Explain why  9𝑥2 equals (3𝑥)2. 

b) Explain why 𝑎2𝑏2𝑐2𝑑2 = (𝑎𝑏𝑐𝑑)2 . 

c) Explain why 𝑦6 = (𝑦3)2. 

 

Practice 99.6 Kindly factor each of the following expressions. 

 

a) 16𝑚2 − 25𝑛2 

b)  4 − 𝑎2 

c) 49𝑥2𝑦2 − 𝑧2𝑤2𝑟2  

 

d) 1 − 𝑦6 



 
 
 

285 
 

 

e) 7𝑎2 − 28𝑏2 

 

 

MUSINGS 
 
Musing 99.7  
Explain why 972 − 169 is divisibly by 84. 
Explain why it is also divisible by 11. 
 

 

Musing 99.8  
If you are not wary of square roots, does 𝑥2 − 5 factor?  
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100. Expected Schoolbook Work: Factoring 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 
 

We can factor expressions of the form  

𝑥2 − 𝑘2 

 

by recognizing them as the difference of two squares. 

 

𝑥2 − 𝑘2 = (𝑥 − 𝑘)(𝑥 + 𝑘) 

 

But schoolbooks generally don’t want students to stop there. They want them to practice factoring all 

sorts of expressions that involve an 𝑥2 and possibly and 𝑥 and some numbers. (Or the equivalent using a 

different letter for the unknown.) 

 

I am not sure why. Perhaps it is just to practice and sharpen one’s general algebraic skills and wits?  

(I know high school teachers reading this are saying: “But James! Students will need this factoring for the 

upcoming chapter on quadratic equations.” I respond, “Actually, we don’t” and I argue that factoring  

actually gets in the way of properly understanding of quadratics.) 

 

To get us going on this factoring work, let’s come at it backwards.  

 

Here’s an expression that is already factored.  

 

(𝑥 + 2)(𝑥 + 5) 

 

We can “unfactor” it by using the area model. 

 

We see 

(𝑥 + 2)(𝑥 + 5) = 𝑥2 + 7𝑥 + 10 

 

 

 

Now, forwards. Imagine we were given this answer first: 

 

𝑥2 + 7𝑥 + 10 

 

Could we figure out the rectangle that gives this answer, and so find the two factors that made this 

expression? 
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It seems reasonable to guess that 𝑥2 + 7𝑥 + 10 came from a rectangle with four pieces (two of which 

combined to make 7𝑥) with the top left piece have 𝑥2 in it. 

 

That 𝑥2 likely came from “𝑥 times 𝑥.” (It could have come from 10𝑥 ×
1

10
𝑥 or from 0.4𝑥 × 2.5𝑥 or 

something else obnoxious, but let’s make the guess that the schoolbook authors are not going to be that 

sneaky in these problems.) 

 

We can also see that the “10” must have come from the bottom right box. But did it appear as 2 × 5 or 

as 10 × 1 or something else?  

 

Let’s put in some abstract numbers 𝑝 and 𝑞 and see if we can guess what they need to be from the 

picture. We do see at the very least we need 𝑝 × 𝑞 = 10. 

  



 
 
 

289 
 

 

Let’s fill in the rectangle and see what we learn. 

 

We see that not only do we need 𝑝𝑞 = 10, we also need 𝑝𝑥 + 𝑞𝑥 to equal 7𝑥. 

 

So, we have that 𝑝 and 𝑞 are two numbers such that 

𝑝 + 𝑞 = 7 

𝑝𝑞 = 10 

 

Now it is a puzzle. Can you think of two numbers that add to 7 and multiply to 10? 

 

The numbers 𝑝 = 2 and 𝑞 = 5 come to mind. Or should it be 𝑝 = 5 and 𝑞 = 2? 

 

We just need something to work. So, let’s try the first option and if we get in a pickle, we can try the 

second one next. 

 

Here goes: 

 
 

Yes. It worked. We see that 𝑥2 + 7𝑥 + 10 = (𝑥 + 2)(𝑥 + 5). 
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Practice 100.1 Do we get the same result if we try 𝑝 = 5 and 𝑞 = 2 instead? 

Let’ try one know for which we don’t know the answer first. 

 

 

Example: Please factor 𝑥2 + 2𝑥 − 24. 

 

Answer: Here’s the picture, assuming the 𝑥2 piece comes from the obvious first guess of 𝑥 × 𝑥. 

 
 

We see we need two numbers 𝑝 and 𝑞 such that 

𝑝 + 𝑞 = 2 

𝑝𝑞 = −24 

 

Thinking of such numbers is tricky this time. 

We do know that one of the numbers must be positive and the other negative. 

 

After a little while, I came up with 𝑝 = 6 and 𝑞 = −4. 

 

Let’s see if this works.  

 

 We’re good!  

𝑥2 + 2𝑥 − 24 = (𝑥 + 6)(𝑥 − 4) 
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We can see that factoring requires guess work and some luck: We end up needing to think of two 

numbers with a given sum and a given product. Is this always easy? Is it always possible? 

 

For example:  

Question:  

Can you think of two numbers that sum to 10 and have a product of 24? 

Can you think of two numbers that sum to 10 and have a product of 25? 

Can you think of two numbers that sum to 10 and have a product of 26? 

 

The first of these questions has an answer, the second has a slightly sneaky answer, and the third one 

has no answer!  

 

Practice 100.2 Use graphing software to graph each of the two graphs 𝑝 + 𝑞 = 10 and 𝑝𝑞 = 26. 

Do the graphs intersect? 

 

So, answering schoolbook factoring problems really does rely on presuming that the book author is 

being kind to you and given you problems that happen to work out if you follow all reasonable 

assumptions.  

 

Warning: The real-world is not so kind! Most expressions of the form 𝑥2 + 𝑏𝑥 + 𝑐 do not factor!  

 

 

 

Practice 100.3 Please factor the following expressions that have been designed to factor.  

a) 𝑥2 + 7𝑥 + 12 

b) 𝑥2 − 8𝑥 + 12 

 

c) 𝑥2 − 𝑥 − 12 

 

d) 𝑥2 − 11𝑥 − 12 

 

e) 𝑤2 + 5𝑤 − 24 
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The Difference of Two Squares – Again!  

 

We can use this technique to factor a difference of two squares.  

 

 Example: Factor 𝑥2 − 25 

 Answer: Think of this as 𝑥2 + 0𝑥 − 25. 

 

 We seek two numbers 𝑝 and 𝑞 such that  

 

𝑝 + 𝑞 = 0 

𝑝𝑞 = −25 

 

So, we see that we need 𝑝 = −𝑞, so I am thinking two numbers that are “the same” but 

opposite in sign.  

 

Let’s try 𝑝 = 5 and 𝑞 = −5. 

 It's 

It’s good!   

𝑥2 − 25 = (𝑥 + 5)(𝑥 − 5) 
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Some Trickier Factoring 
 

Let’s put some numbers in front of the 𝑥2. 

 

 Example: Kindly factor 2𝑥2 + 5𝑥 + 2 

Answer: Here’s the setup this time. 

 

 

Let’s presume the author is being kind to us and the 2𝑥2 term comes from something 

straightforward: 2𝑥 × 𝑥. 

 

Let’s put in some general numbers 𝑝 and 𝑞. 
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 Now we have to be careful! Did you catch the “2𝑞𝑥” in the bottom left corner? 

 We need two numbers such that  

𝑝 + 2𝑞 = 5 

𝑝𝑞 = 2 

Two numbers that multiply to 2, and so that double one plus the other is 5. 

 

I am guessing 𝑝 = 1 and 𝑞 = 2. 

 

Does this work?  

 

 Yes! 

2𝑥2 + 5𝑥 + 2 = (2𝑥 + 1)(𝑥 + 2) 

 

 Practice 100.4 Kindly factor each of these expressions that have been designed to factor.  

a) 3𝑥2 − 8𝑥 + 4 

b) 5𝑥2 + 9𝑥 − 2 

c) 4𝑥2 − 4𝑥 − 3 

d) 4𝑥2 − 𝑥 − 3 

e) −𝑥2 + 9 

f) 19𝑥2 + 20𝑥 + 1 

g) 24𝑥2 + 17𝑥 + 3  (This one is annoying. Which two factors of 24 are best to use?) 
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MUSINGS 
 
Musing 100.5 It seems that, by and large, we want mathematical expressions to factor with all 
numbers involved integers. But we need not insist on this. 
 
Making use of square roots and fractions, please factor each of these expressions.  
 
a) 5𝑥2 − 3 

b) 𝑥2 +
3

4
𝑥 +

1

8
 

c) 3𝑥2 + 3√3𝑥 + 2 
 

Musing 100.6 Complete the picture to show, again, that 𝑁2 − 𝑘2 factors as (𝑁 − 𝑘)(𝑁 + 𝑘). 
 

 
 

Musing 100.7 EXPLORATION 
Roll three dice and get three outcomes 𝑎, 𝑏, and 𝑐. Try to factor the expression 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 
Most times it won’t factor using whole numbers, or factor at all.   
 
Can you get a sense the percentage of these expressions that do factor nicely? 
 
 
Musing 100.8 There is a “difference of two cubes” formula.  
 

𝑁3 − 𝑘3 = (𝑁 − 𝑘)(𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔) 
 

Can you figure out the “something”? 
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