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Algebra is the practice of avoiding the tedium of doing arithmetic problems one instance at a time, to 
take a step back and see a general structure to what makes arithmetic work the way it does, and so open 
one's mind to more than the one view of what arithmetic can be. 
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0: It All Starts with a Dot 
 

I remember as a young lad, at around age 12 or so, wondering whether it might be possible to 
communicate with aliens (assuming they exist). What would it take to do so? 

I was quite rational in my thinking and applied a systematic line of reasoning to consider the matter.  

Communication, I first noted, requires each being involved to have a sense of “self” and a sense of 
“other.” If the entity with which I am trying to talk has no sense of anything but itself, all will be 
pointless. The fact is that I can only hope to communicate with a being who is aware of communication.  

Such a being, possessing a sense of self and of other, I then reasoned is likely to have a sense of 
“nothing” and “something.” Maybe the something could be a physical object, or a waft of smell, or a 
pulse of sound or light. The “nothing” would be the absence of the something.   

 

 

Figure 0: Nothing   Figure 1: Something 

 

I next reasoned that—and this might have been a bit of a leap in thinking—if a being was aware of one 
thing, it might be aware of more than one thing; specifically two things, and three things, and so on. The 
being and I might share awareness of the counting numbers: 1, 2, 3, 4, … .   

 

 

 

Figure 2: Two things   Figure 3: Three things 

 

I decided that my best bet in communicating with an alien is to assume we each know how to count 
things and thus to communicate via the counting numbers. So, I decided we should send “blips” of 
sound or light out into space, in patterns of different counts to somehow say, “Hello! I am here.” 

But what counts of these blips should we send? What pattern of counting numbers would be 
interpreted as deliberate and “intelligent” and undeniably as coming from someone trying to 
communicate?  
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I decided we should send blips that match the first few prime numbers—2 blips, pause, 3 blips, pause, 5 
blips, pause, 7 blips, pause, 11 blips, pause, 13 blips, pause, 17 blips, pause, 19 blips, pause, 23 blips, 
pause, 29 blips, pause, 31 blips pause, 37 blips, pause, 41 blips, pause, 43 blips, pause, 47 blips, pause, 
53 blips, pause, 59 blips, pause, 61 blips, pause, 67 blips. (Maybe that’s enough?)  

Such a sequence of counts would be undeniably intelligent as I knew that these numbers are special and 
fundamental and not at all random. They take some mathematical sophistication to recognize. Sending a 
list of prime numbers, I thus thought, is likely to be interpreted as deliberate. (We’ll learn about the 
prime numbers in this book.)    

And this idea of mine, I later realized, is not a bad one: several science fiction writers had come up with 
the same proposal.  

But looking back, it was clear as a young lad I was a enamored with mathematics. I could sense power to 
it. I could sense universality to it. I could sense that mathematics transcended my humanness—and I 
found that thrilling, and inspiring, and somehow comforting.  

My young mind could start to see a marvelous journey to be had by simply contemplating “nothing” and 
“something,” and then multiple copies of that something. (At least a form of mathematics that my 
human brain could comprehend.)  

My first “something” was a dot.  

It all starts with a dot. 
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1. Humankind’s First Mathematics   
 

The first mathematical activity humankind ever conducted might have simply been counting. There is 
historical evidence for this claim.  
 
In 1937, archeologists in Czechoslovakia at Dolní Věstonice in Morovia uncovered the radius bone of a 
wolf on which 57 notches were carved. The first 25 notches appear in groups of five and are then 
followed by a long notch, 30 ungrouped short notches, and a final long notch. (Or if you turn the bone 
the other way, maybe it’s 30 ungrouped short notches followed by five groups of 5 short notches with 
long notches in-between?)  

 

Figure | | | | | | | : Tally marks on a bone 

This bone dates back some 30,000 years and strongly suggests that pre-historic humans were counting. 
(Counting what? Deer? Mammoths? Full moons?) 

Notched bones have also been found at Border Cave in South Africa too, dating back to possibly 44,000 
BCE, suggesting that counting has been happening for a very long time indeed.  

And counting certainly seems innate to our human thinking. Small children delight in the act of counting.  
For instance, they will count stairs going up. They will count the same stairs going down. (And if they get 
different answers for these two counts they might or might not think something of it.)  

Be it for humankind, or for young humans, or for a young lad wondering about communicating with 
aliens, it does indeed seem that counting is a natural (human) start to mathematics. And we’ll officially 
start this journey too with the positive whole numbers that count things. 

Figure 1, 2, 3, 4, …: The set of counting numbers  

 

People sometimes call the set of counting numbers the set of natural numbers, probably because they 
are so natural to us.  A funny “blackboard-script” capital N is used to denote them as a collection: ℕ. 

No human or group of humans or a multitude of humans can write down all the counting numbers. The 
list of them simply does not stop. If you think you’ve written the biggest counting number there is, you 
are mistaken: simply add 143 to it and you’ll have a bigger counting number still.   

https://www.czso.cz/documents/10180/20541677/3201781404.pdf/30c97289-11b8-4dac-a9f1-89ddef49c2eb?version=1.0
https://mathtimeline.weebly.com/early-human-counting-tools.html
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We humans always have to “cheat” when listing the counting numbers. We do that by writing “dot dot 
dot” after a start to the list to mean “and keep on going forever.”   

But on the other end of matters, namely, at the start of the list, there is a tricky question to be asked.  

 

Is 1 the first counting number? Or is there another number just before it?  

 

Humans have mused over the meaning of zero, 0 for millennia, wondering if it deserves to be called a 
counting number not. Does zero count something?  

Think about it. If I say that there are zero sparkly purple giraffes in the room I am sitting in right now as I 
type this very sentence (and it is true, there are no sparkly purple giraffes here with me), do you think it 
is because I actually counted zero sparkly purple giraffes, or did I not count and just observe a lack of 
sparkly purple giraffes? That is, does one count zero or does one just observe zero? 

To do this day, people—mathematicians even—choose not to give a definitive answer to this question 
and live with both options. Sometimes people say that zero should be included in the list of counting 
numbers and sometimes they choose to exclude it. There really is no standard convention on this.  In 
fact, the same mathematician might one time write a paper in which she does regard zero as a counting 
number for the purposes of that work, and, later, write a separate paper, in which she states she won’t. 
It’s just a matter of what is appropriate for the problem being explored. Some problems naturally allow 
for zero. Others don’t.   

Whether or not you choose to include zero in the list of counting numbers really does not matter. You 
just have to state to your readers in any work you do whether or not you are including zero in your list 
of counting numbers.  

 

 

Alternative Figure 0, 1, 2, 3, 4, …: The set of counting numbers perhaps 
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In this book, we’ll follow what their name suggests and use the counting numbers for counting things. 
Specifically, we’ll count dots. And to be clear, we’ll consider zero to be a number too. 

For instance, “ 5 ” shall represent five dots 

 

 

 

and “ 2 ” shall represent two dots 

 

 

and “12,876,290,980,771,006,629,932,183” shall represent a dreadfully large count of dots. 

 

We’ll end this section with a picture of zero dots.  

Here it is:  
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MUSINGS 
 
Musing 1.1 In 1938, Milton Sirotta, nine-year old nephew of American mathematician Edward Kasner, 
coined the term googol for the number given by 1 followed by one hundred zeros. 
 

1 000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000

 

 
At the same time, he coined the name googolplex for the number given by 1 followed by a googol of 
zeros.  
 
Can you describe a number bigger than a googleplex?  Can you describe another number bigger still? 
 
Musing 1.2 Many words in the English language are obvious associated with numbers. For example, a 
monologue is a speech by a single person and to speak in unison is to speak in one voice. (The prefix 
mono comes from the Greek mónos meaning “alone” or “single”, and the prefix uni from the Latin 
unis for “one.) To have a dilemma is to be caught between two choices and a bicycle is a vehicle with 
two wheels. (Bi comes from the Latin for “two” and di the Greek for “two.”)  
 

a) Can you think of two English words using prefixes associated with each of the numerals three 
through ten? 

b) September is the ninth month of the year, yet the prefix sept comes from the Latin for 
“seven.” October is the tenth month of the year, yet the prefix oct comes from the Latin for 
“eight.” November and December are the eleventh and twelfth months of the year, despite 
nov and dec being derived from the Latin words for “nine” and “ten.” 
 
Can you find out why these months of the year are off their counts by two?  
 

Musing 1.3 Image standing at the base of a large set of stairs.  
 
There is 1  way to take one step up and one step down. We’ll 
denote this as UD . 
 
There are 2  ways to take two steps up and two steps down in 
some order, namely, UUDD  and UDUD . (Why isn’t UDDU an 
option?) 
 

a) There are 5  ways to take three steps up and three steps down in some order. List them all. 
b) There are 14  ways to take four steps up and four steps down in some order. Can you find 

them all? 
c) Care to list all 42  ways to take five steps up and five steps down in some order? (The answer 

can be no!) 
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2. Addition 
 

What does “ 2 3+ ” mean in terms of dots?  

It seems natural to regard this as “two dots placed together with three dots.” And if I draw a picture of 
such a thing, I see five dots.  

 

Figure 2 3+  

I followed a “please read left-to-right” bias in this picture, placing all my dots in a row with two dots on 
the left followed by three on the right. But there is no need to read this picture left to right. If I look right 
to left, instead, I see 3 2+ . (And this is, of course, still is the same five dots.)    

This is philosophically deep!  

I realize now, for instance, that 4 7+  must give the same answer as 7 4+ , without ever having to say, 
or even think, “eleven.”  Simply imagine placing four dots and seven dots next to each other in a row 
and looking at that picture left-to-right and then right-to-left. The count of dots in the picture does not 
change even if your perspective looking at it does.  

I can even “see” why computing 176203982761 87799998699+  and 
87799998699 176203982761+  must give the same answer without doing a lick of actual arithmetic. 

(I don’t want to do such arithmetic!)  

It seems we’ve stumbled upon a fundamental truth about the counting numbers. 

 

𝑎𝑎 + 𝑏𝑏 and 𝑏𝑏 + 𝑎𝑎 are sure to have the same value,  
no matter which counting numbers a and b represent. 

 

What about zero? Does this “truth” hold for number zero as well?  

Let’s explore. 
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Here’s a picture of 5 0+  (or is it of 0 5+ ?) 

 

Figure 5 0 0 5+ = +  

Five dots followed by no dots is just, well, five dots.  
 
         5 + 0 = 5 
 
Also, no dots followed by five dots is five dots.  
 
        0 + 5 = 5 
 
It seems that not only does our first fundamental truth seem to hold if one (or both?) of the counting 
numbers is zero, but we’ve also stumbled upon a second truth. 

 

0a a+ =  and 0 a a+ =  no matter which counting number a represents. 
 

It’s fun to imagine a picture of 0 0+ . (Can you?)  
 
And one of 0 0 0+ + .  
 
And one of  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

+ + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + +
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An Additional Thought (Ha!) 
 
There is another way to interpret 2 + 3 in terms of dots. Simply look at a set of dots with different 
characteristics among them: say two are purple and three are blue. 
 

 
Figure: 2 + 3 again 

 
Then the answer to “2 + 3” is the result of recounting the dots choosing to ignore differences. 

We did precisely this with our first picture of 2 + 3: we had two left dots and three right dots and then 
chose to ignore leftness and rightness. 

 

 

 

We can say that 7 apples and 9 oranges make for 16 pieces of fruit by choosing to ignore fruit details. 
 
Perhaps this is leading us to a curious, and somewhat philosophical, idea of what addition actually is?  
 

 Addition is the result of recounting a set of objects after choosing a set of differences to ignore.  
 
I don’t think many people think of addition this way.  

(I thank my colleague Joe Norman for opening my eyes to this!)  
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MUSINGS 
 
Musing 2.1 Here is a picture of some chickens.  

 
 

 
 

a) Can you interpret this as a picture for computing 2 + 5? In what way? 
b) Can you interpret this as a picture for computing 1 + 2 + 4? In what way? 
c) Can you interpret this as a picture for computing 4 + 3? In what way? 

 
 
Musing 2.2 When we write a number such as 523  we are aware of the importance of “place.” The 5  
here denotes five hundreds (and not five tens nor five thousands), the 2  two tens, and the 3  three 
units. This spares us the need to invent new symbols beyond the ten with which we are familiar: 0 ,1,
2 , 3 , 4 , 5 , 6 , 7 , 8 , and 9 . This positional notation also helps us calculate sums of numbers. 
 
The Romans, on the other hand, used different symbols for units, tens, hundreds, thousands, as well 
as for five, fifty, and five hundred.  

I = one 
V = five 
X = ten 
L = fifty 

C = one hundred 
D = five hundred 

M = one thousand 
 
These numerals can still be seen on clock faces, monuments, and during the credits of television 
shows and movies. 
 
In the system of Roman numerals, the number 523 , for instance, was written DXXIII. Positional 
notation did not come into play (except for the convention that symbols were listed in decreasing 
order of size).  
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During the Medieval period in Europe, it became popular to use a subtractive principle to denote 
numbers, such as 4, 9, and 90. 
 

4 = IV 
9 = IX 

90 = XC 
 
Medieval scholars set the following rule for this subtractive principle. 
 

One can only subtract a single I from a single V or a single X; or subtract a single X from a 
single L or a single C; or subtract a single C from a single D or a single M.  

 
So, writing VL for 45  would not be allowed. Nor would writing IIX for 8  or XCC for 190 , for instance. 
(Well, perhaps this third one can be interpreted as “XC + C.” But to avoid the seeming transgression of 
subtracting X from CC, scholars would write CXC for 190 .) 
 
With this subtraction principle the position of a symbol was made important, but the meaning of 
“place” was still different from what we mean it to be today. 
 

a) Three movies were made in the years 1978, 1983, and 1999. How do their dates appear in the 
movie credits?  

 
b) To appreciate our place-value system for writing numbers, try computing the following sum 

without mentally converting the numbers you see to our decimal system. Can you do it?  
 

 
 

c) Look at a clock face with Roman numerals. What do you notice about the number four? Is the 
same true for the number nine? 

 
d) How did Romans represent extremely large numbers, numbers in the hundreds of thousands 

and the millions? Find out.  
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3. Repeated Additions 
 

Last section we had fun adding together multiple copies of zero. The result is always zero. Let’s now add 
together multiple copies of a non-zero counting number, say 5 . 

Here are four copies of 5 placed together. 

 

 

Figure 5 5 5 5+ + +  

 

In the world of counting numbers, people use the word multiplication for repeated addition.  
 
The standard shorthand for 5 + 5 + 5 + 5 is 4 5× , using the multiplication symbol × to denote the 
repeated addition.  
 
The term 4 5×  is read as “four groups of five” in the U.S., It is read as “four lots of five” in Australia, or 
perhaps as “four copies of five.” But watch out, folk in Europe interpret “4 × 5” as meaning something 
different: they say it is “the number 4, five times,” and so read it as 4 + 4 + 4 + 4 + 4.  

 
Luckily 5 + 5 + 5 + 5 and 4 + 4 + 4 + 4 + 4 have the same value, so folk on all continents are thinking 
“20” in the end. 
 
But was that luck?  
 
We’ll follow the U.S. language and thinking in these notes. In which case 
 
 

5 + 5 + 5 + 5 is four groups of five: 4 × 5, 

4 + 4 + 4 + 4 + 4 is five groups of four: 5 × 4. 

 
 

And at first glance, these two quantities are philosophically different.  
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5 5 5 5+ + +  

 

 

4 4 4 4 4+ + + +  

 

Figure 4 × 5 and 5 × 4 

 
Is it remarkable coincidence that both pictures have twenty dots? 

 
Pause. This really is remarkable!   
 
For example, is there any reason to believe that a picture of 173 groups of 985 dots should contain the 
same count of dots as a picture of 985  groups of 173 dots? (Do you have the patience to draw out each 
of these pictures to check? Please say you don’t!)  

If you compute the products 173 985×  and 985 173× via the long multiplication algorithm taught in 
school, it is not at all obvious that one is going to obtain the same final number in each: the 
computations look so very different in their middles! It is quite a shock to see the common answer 
170,045  appear.  

 

Figure 173 985× versus 985 173×  

What magic is this? 
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TRY IT!  

Take this in!  

Work out 87 × 43 and then 43 × 87 using the school algorithm. The final answer of 3741 will 
appear for each, but the middles of the computations are quite different.  
 
Is it obvious to you that the school algorithm is certain to give the same answer if you switch 
around the two numbers you multiply?  

 

This is the allure and delight of mathematics. As one thinks about and plays with mathematics, little 
mysteries and surprising “coincidences” start to arise, and one begins to suspect there is something 
deep and hidden lurking behind the scenes. And then, out-of-the-blue, a flash of brilliant insight 
suddenly makes everything stunningly clear. All hidden machinations are revealed.  

The flash of insight needed to reveal the workings of repeated addition is this: instead of drawing groups 
of a repeated quantity in a single row, stack those quantities instead to make a rectangle of dots.  

 

 

Figure 4 5 5 4× = ×  

Look at the figure from the left, focusing on the rows and you see four copies of five dots: 4 5× . Now 
look from above to focus on the columns to see five copies of four dots: 5 4× . It’s the same collection of 
dots just viewed from two different perspectives. It simply must be the case, then, that 4 5×  and 5 4×
represent the same count of dots.  (No mention of the number 20  needed!) 

In the same way, a 173 -by- 985 rectangle of dots looked at two different ways would reveal that 
173 985× and 985 173× simply must give the same count of dots. This means that the school 
multiplication algorithm simply can’t change its answer if we switch the order of the numbers we 
multiply.  
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We seem to have stumbled upon another fundamental truth about the counting numbers. 

𝑎𝑎 × 𝑏𝑏 and 𝑏𝑏 × 𝑎𝑎 are sure to have the same value,  
no matter which counting numbers a and b represent. 

 
 
The Role of Zero with respect to Multiplication 

What’s “five groups of no dots”?  

Well … that’s no dots and no dots and no dots and no dots and another set of no dots! We have 5 0×  is 
0 0 0 0 0+ + + + and this is 0 . Five groups of nothing is nothing.  

We can argue this way that 17 × 0 and 62 × 0 and 70986798766519273 × 0 should all be zero as 
well. 

 

What about 0 5× ? Is that zero as well? If I have no groups of five dots, does that mean I have no dots at 
all? (Check out Musing 3.2. Terell is worried about this.)  

 
We just said at the top of the page that we can switch the order we multiply numbers and make no 
change to the answer. If we think that should apply to the number 0 as well, then we’d have to say that  
0 5×  has the same value as 5 × 0. We said that 5 × 0 equals 0. This means that 0 × 5 should be 0 as 
well.  
 
 We have 

𝑎𝑎 × 0 and 0 × 𝑎𝑎 each have the value 0, 
no matter which counting number a represents 

 

Did invoking the idea that “we can switch the order we multiply numbers” feel okay to you? Or maybe it 
already felt obvious to you that “0 groups of 5” has to be zero? 
 
Zero is a tricky number. It can cause all sorts of brain-hurty troubles.  Consider this question:  
 

What is 𝟎𝟎 × 𝟎𝟎? 

Here’s an argument suggesting that 0 × 0 should equal zero. 

We just set the rule that 𝑎𝑎 × 0 equals zero, for all numbers 𝑎𝑎. So, it works for 0 too.  
We have 0 × 0 = 0. 
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Here’s an argument suggesting that 0 × 0 can’t be zero. 

In the “real world,” 0 × 0 reads as “zero groups of nothing.”  
How much is that?  
 
Well, if I have no nothing, it must be because I have something.  
0 × 0 thus cannot be nothing.  
It better be something! 

 
The number 0 really has befuddled humankind for millennia—not just on the philosophical matter of 
whether or not it deserves to be considered a counting number in its own right, but also with regard to 
understanding on what doing arithmetic with zero actually means.  
 
It really can hurt one’s brain!  
 
Where mathematicians have landed on this. 

Seventh-century Indian mathematician and astronomer Brahmagupta was the first to lay out rules for 
working with the number zero and led the world to show that the mathematics is logically consistent if 
we do indeed assume that our four properties of numbers are valid, even if we include the number zero. 
  

If 𝑎𝑎 and 𝑏𝑏 are counting numbers, including possibly being zero, then we have that  

 𝑎𝑎 + 𝑏𝑏 and 𝑏𝑏 + 𝑎𝑎 are sure to have the same value, 

𝑎𝑎 + 0 and 0 + 𝑎𝑎 both have the value 𝑎𝑎, 

 𝑎𝑎 × 𝑏𝑏 and 𝑏𝑏 × 𝑎𝑎 are sure to have the same value, 

 𝑎𝑎 × 0 and 0 × 𝑎𝑎 both have value 0. 
  

The logical consequence of the fourth property is that 0 × 0 must be 0. 

Mathematicians have decided to follow the mathematics. They don’t feel that all quantities and actions 
must always have real-world interpretations. And this is surprising to many people who experience only 
school mathematics. 

Mathematics is exceptionally good for describing and making sense of real-world scenarios, 
but real-world scenarios are not good at “explaining” all mathematics.  

Mathematics is bigger than the real world! 
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One more thing. (That’s a little joke too as you will see.)  

 

What’s one group of five? Clearly five!      

1 5 5× =  

 
What do five groups of one make? Clearly five!   

5 1 5× =  

 
In the same way we can argue that 17 × 1 = 17 and 1 × 299 = 299  and 30012 × 1 = 30012.   
 
It seems we have   

 

1 × 𝑎𝑎 = 𝑎𝑎  and 𝑎𝑎 × 1 = 𝑎𝑎  
no matter which non-zero counting number a  represents (including zero). 
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MUSINGS 
 

Musing 3.1 Here is an unusual (and inefficient!) way to compute the product of two positive counting 
numbers. To compute 4 5× , say, first draw 4  concentric circles and then draw 5 radii for those 
circles. The number of pieces you get is 4 5 20× = . 
 

 
 

In the same way, 2  concentric circles and 3  radii give 2 3 6× = pieces. 
 

a) Draw a picture for 3 4×  and verify one does indeed see 12 pieces. 
 

b) Can you see in your mind’s eye that a picture for 20 1×  must have 20 pieces? 
 

c) Can you see in your mind’s eye that a picture for 1 20×  must also have 20 pieces? 
 

d) We drew the picture for  4 5×  and saw 20  pieces. Draw the picture for 5 4×  and verify that 
it gives 20  pieces too.  

 
It is not obvious to me why computing a b× and b a×  this weird way should give the same counts of 
pieces for all possible non-zero counting numbers a  and b . I am curious, is it obvious to you?  
 
For that matter, is it all obvious to you why drawing circles and radii this way and counting pieces 
should precisely match the ordinary multiplication of the two numbers? This is weird! 
 
Any thoughts?  
 
Musing 3.2 Terell is a bit worried about saying that 0 5×  should be 0 . He says, “Draw a picture of 
three dots and ask how many groups of five you see?”  He reasons that you could legitimately answer 
that you see no groups of five in a picture of three.  So, maybe, 0 5×  is 3 ?   
 

 
 
Terell has just made my brain hurt. What do you think? Or is your brain hurting too? 
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4. The Repeated Addition Table 
 

Most people call this a “multiplication table,” except each entry here is a rectangular array of dots 
representing the multiplication fact appropriate for its cell. For example, in the third row, seventh 
column of the table we have a 3-by-7 rectangle of 21 dots.  

(It has become a societal convention to always mention rows  
first and columns second.)  
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Having this imagery for multiplication answers in your mind can help you figure out new multiplication 
facts from known ones.  
 
For example, if you happen to remember that 7 × 7 is 49, then you can figure out the answer to 7 × 8 
somewhat readily: imagine the rectangle picture of 7 × 8 and identify a picture of 7 × 7 within it.  

We then see that 7 × 8 = 49 + 7 = 56. 

 

In the same way, 6 × 4 is 16 + 4 + 4 = 24.  
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Actually, drawing dots gets tiresome pretty quickly. It’s easier to draw “unit squares” (squares of area 
one).  
 
For example, here’s a picture of 7 × 8 again, but with seven rows of eight unit squares per row.  
We have 7 × 8 = 56 squares of area one, and so this rectangle has area 7 × 8 = 56 square units.  

 

 

Actually …  This picture is tedious to draw too!  
 
We can just draw a rectangle and label one side as length 7 and the other side as length 8. The area of 
the rectangle is 7 × 8 = 56 and we can just imagine 56 square units. 
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Now we can readily see how to chop up the rectangle into two pieces and to deduce that it’s area if 
given by 49 (which is 7 × 7) plus 7 (which is 7 × 1). 

 
 

 

7 × 8 =    7 × 7  +   1 × 7    =    49 + 7   = 56 
 

In 1998, then Labour Schools Minister for the U.K. Stephen Byers was asked on the fly during an 
interview, “What is 7 × 8?” In a flustered moment he responded “54” and become a bit of a 
laughingstock for the nation. 
 
It would have been lovely if he had the presence of mind to answer along these lines: 

“Ooh! Seven times eight is the hard one. Let me think. 
Well, I know that seven times seven is 49. So, adding another 7 to this gives 7 × 8.  

The answer is 56.” 

It would have been just brilliant for a nation to see a demonstration of beautiful mathematical thinking. 

 

Practice: Draw a picture to show that the value of 32 × 16 equals the sum of these four 
multiplication pieces:  30 × 10 + 2 × 10 + 30 × 6 + 2 × 6. 
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MUSINGS 
 
Musing 4.1 The numbers from computing 1 × 1 = 𝟏𝟏,   2× 2 = 𝟒𝟒,   3× 3 = 𝟗𝟗,   4× 4 = 𝟏𝟏𝟏𝟏,  and so on 
are called the square numbers. Can you see why? (Look at the multiplication table.) 
 
Musing 4.2 The entry for 3 × 7 in the multiplication table is a rectangle of dots with three rows and 
seven columns. Describe the entry for 7 × 3. 
In general, how would you describe the relationship between the entries for 𝑎𝑎 × 𝑏𝑏 and 𝑏𝑏 × 𝑎𝑎? 
 
Musing 4.3 How many dots are there along the first row of the table? Along the second row? Along 
the third, fourth, and tenth rows? 
 
How many dots are there altogether in the table?   
 
Musing 4.4 What’s common about all the entries of the same color? 
How many dots are there of each color? 
 

 

MECHANICS PRACTICE 
 
Practice 4.5 Match each quantity on the left with its matching quantity on the right. 
(Try to imagine rectangles here.)   
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5. Repeated Addition in the “Real World” 
 

Suppose there are essentially only two different routes for driving from city A to city B, and essentially 
three different routes for driving from city B to city C.  

How many different options do I have for driving from city A to city C? 

 

Figure 3  cities 

Question: Some people look at the picture without thinking and say that the answer to this 
question is 5. Do you see why the number 5 might first come to mind?  

 

If I take the top route from A to B, then I am presented with 3 options on how to proceed next. And if I 
take the bottom route from A to B, I am again presented with 3 options for how to continue. I thus have 
3 3 6+ =  possible ways to travel from A to C.  

 

 

 

If, instead, there were 5 choices of route from city A to city B, and still 3 choices of route from city B to 
city C, then each option I choose for the first leg of my journey offers 3 choices on how to follow that 
choice. I’d thus have 3 + 3 + 3 + 3 + 3, that is, 5 groups of 3 options. This is repeated addition, and so, 
in this revised scenario, there 5 × 3 routes in total from city A to city C.  

 

Question: Draw a picture of this of this and convince yourself that there are indeed 3 + 3 + 3 +
3 + 3 = 15 routes from city A to city C.  
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Now, let me tell you something about my wardrobe.  
 
 

I own just 5  shirts, all different, and just 4  different pairs of trousers. How many different shirt-
trouser outfits could you see me in?  

 

Again, this is a repeated addition challenge. For each choice of shirt, I have 4  choices of trousers to go 
with it. Thus, I have a total of 4 4 4 4 4 5 4+ + + + = ×  choices for my outfit.  

Of course, this count would change if I gave you some further information that restricts my options. (For 
example, I will never wear my chartreuse trousers with my acid-green shirt.) But without knowledge of 
such restrictions, counting options is a matter of thinking through repeated addition.  

We have 

The Multiplication Principle 
If there are a  ways to complete a first task and b ways to complete a second task, and 
assuming that a choice made for one task in no way influences the choice made for the 
other, then there are  
 

a b×  
 
ways to complete both tasks together.    

 

For example, if there are 8  different movies I could watch tonight and 3  different snacks I could eat 
while watching them, then there are 8 3 24× =  different movie/snack combinations for me to consider. 

If there 4 answers to a select from for a first question in an exam and 4  to select from for a second 
question, then there are 4 4 16× =  different ways I could answer those two questions. (Hopefully, I 
choose the answers that are correct for both questions.) 
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In the travel example above there are 6  ways to move from city A to city C. If there are also 5  routes 
from city C to a new city D, then we can travel from A to B to C to D in 6 5 30× =  different ways. (This is 
really the product 2 3 5× × .) 

 

Figure 30 routes from city A to city D 

 

Question: On a menu, there are 10 choices for a starter, 12 choices for a main meal, and 5 
choices for dessert. How would you explain to a friend why that provides 10 × 12 × 5 = 600 
options for a three-course meal? 

 

We’re seeing how to use the multiplication principle multiple times to handle counting multiple tasks! 
  

The Full Multiplication Principle 
If there are a  ways to complete a first task and b ways to complete a 
second task, up to z ways to complete a final task, and assuming that a 
choice made for any one task in no way influences the choices made for 
any other task, then there are  
 

a b z× × ×  
 
ways to complete all the tasks together.    
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MUSINGS 
 
Musing 5.1 I own 5 different shirts and 4 different trousers. If there are no restrictions on which shirt 
I might wear with each pair of trousers, then you could see me in 20  different shirt/trouser outfits. 
 

a) I also own 3  different pairs of shoes. How many different shirt/trouser/shoes outfits could I 
wear? 

b) I own 1 hat, which I might or might not wear. With the hat option, how many different 
shirt/trouser/shoes/hat-no-hat outfits could you see me in? 

 
(Assume in these questions that there are no restrictions on my choices in putting together an outfit.) 
 
Musing 5.2 
 

a) If I were to roll a die and flip a coin, how many different outcomes are there for me to 
possibly see? 
 

b) If I were to roll a red die and a blue die, how many different outcomes are there for me to 
possibly see? 

 
Here’s an annoying question.  
 

c) If I were to roll two identical white dice, how many different outcomes are there for me to 
possibly see? 

 
When Amit considered this third question, he said that this is just the same problem as part b and 
thus has the same answer. “After all, why should the color of each die matter?” he responded.  
 
Beatrice, on the other hand, wasn’t so sure. She was worried that because one can no longer tell the 
dice apart, the outcomes you see might be interpreted differently and the answer to the question 
thus might change.  
 
Chi thought about this and asked: “What if one white die is rolled first and the other is rolled second? 
Then we could tell the rolls apart and maybe the answer is the same as for part b?”  
 
Debjyoti said that his brain hurts and he doesn’t know what to think. 
 
Here, finally, is my question to you:  
 

Is your brain now hurting too? 
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Musing 5.3 Can you see that there are 33  ways to make your way from city A to city B in this 
complicated road map? 
 

 
 

 
  

MECHANICS PRACTICE 
 
Practice 5.4 Make up a “choice” problem whose answer is 6 × 2 × 3 × 2. 
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6. Ordering Additions 
 

Try this!  

 

 

 
A NOT-EXCITING GAME OF SOLITAIRE 
 
Write the numbers 1, 2, 3, 4, 5, and 6 on a page.  
 

 
 

A “move” in this game of solitaire consists of erasing two numbers and replacing them with their sum.  
 
For example, if you cross out 3 and 5 you will then write 8 on the page and have the numbers 1, 2, 4, 
6, and 8  to work with. If you next cross out 1 and 8, you will replace them with 9 and be left with 2, 4, 
6, and 9. And so on. 
 
Each move has you erasing two numbers and writing one number, so the count of numbers on the 
page steadily decreases. The goal of this game is to end up with the single number 21 on the page. 
 
Do try it. Can you win?  
 

 

It really is worth playing the game.  

 
I bet you can get 21 when you try it. 
I bet you can get 21 again playing a second time but making different choices along the way. 
 
Next challenge: Play the game yet again and try to not get the answer 21.  
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As you probably suspect, this game is rigged: you are sure to get a final single number of 21 each and 
every time you play no matter what choices you make along the way.  

Replacing the numbers with groups of objects makes it clear why this is the case. I’ll draw dots.   

 
 

 
 

The act of erasing two numbers and replacing them by their sum simply combines dots in two separate 
groups to make one group.  

Here’s play of the game starting by combining 3 and 5, and then combining 1 and 8, and going from 
there. 

 

Without looking at the details you can see that all we are doing is slowly combining the dots initially in 
separate groups into one big group. The count of dots never changes as we play this game. Thus, every 
game ends with the one same final state: all the dots at the start of the game combined into one big 
group.  
 
As there were 21 dots to begin with, this game is destined to end with the number 21.  
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Question: This game is solitaire is played starting with the numbers 4, 8, 8, 10, and 20 written on 
a page. What final single number will remain on the page at the end of the game?  

Do you think you could adequately explain why this is so to another person? 
 
 

In these notes so far, we’ve only ever added two things at a time. (Well, I did ask you to add together an 
absurd number of zeros in section 2.) But we know from our school days we can add together any 
number of numbers we like. Let’s consider 

 

 1 + 2 + 3 + 4 + 5 + 6. 

 
School teaches us to compute a string of additions like this by only ever adding two numbers at a time, 
starting at the left and working to the right.  

 

But we’ve just seen from the solitaire game that we add pairs of numbers in any order we like, and we 
are sure to obtain the same final answer. 
 
In 1 + 2 + 3 + 4 + 5 + 6, we can add the 4 and 6 together first if we like and turn the sum into 1 + 2 +
3 + 5 + 10. And now we could add the 2 and 5 and make it 1 + 7 + 3 + 10, and so on. (Adding 3 and 7 
next gets us to 1 + 10 + 10  and the final answer of 21 is now apparent.) 
 
We also learned in section 2 that when we add 4 and 6 we can think 4 + 6 or can think 6 + 4, it doesn’t 
matter.  
 

So, in all possible interpretations of “order does not matter,” we have the following powerful realization. 

 

In any string of counting numbers added together,  ...a b c d e y z+ + + + + + + ,  it does not 
matter in which order one chooses to perform the additions. The same answer will always result.  
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This gives us the means to sometimes be clever when presented with a long sum.  

For example, in the sum 31 7 84 3 9 16+ + + + +  I can see: 

 31 and 9 together make 40,  
 7 and 3 make 10, and 
 84 and 16 make 100. 
 
So, this sum can be computed as 40 + 10 + 100, which is 150.  
This is much better than working left to right! 
 
Breaking a number down into a sum of two numbers can be helpful too. For example, seeing 47 as 3 +
44 makes 97 + 47 manageable. 
 
 97 + 47 = 97 + 3 + 44 = 100 + 44 = 144 

 

Question: Can you see 16 + 92 + 4 + 39 as the same as 20 + 100 + 31? 
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MUSINGS 
 
Musing 6.1 Can you see that each of these sums has value one hundred? 
 

a) 3 50 47+ +  
b) 46 18 4 15 2 15+ + + + +  
c) 17 17 17 17 17 2 2 2 2 2 1 1 1 1 1+ + + + + + + + + + + + + +  
d) 48 3 49+ +  

 
Musing 6.2   

a) Can you see that  
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ + + + + + + + + + + + + + + + + + +  
 

is ten copies of 21 , and so has value 210 ? 
 

b) What is the value of 1 3 5 7 9 11 13 15 17 19+ + + + + + + + + ? 
 

c) There is a story of a famous eighteenth-century mathematician Carl Friedrich Gauss who, as a 
schoolboy, dumbfounded his teacher by finding the sum of all the numbers 1, 2 , 3 , 4  and 
so on up to 100  in a matter of seconds. Can you see that the sum of these numbers equals 
50 copies of 101? (This makes the sum equal to 5050 .)   
 
(Care to look up the story on the internet? You’ll find several different versions of it leaving 
one to wonder how true the story might be in the first place!)  
 

d) You decide to play the solitaire game described in this section with the numbers 1, 2 , 3 , 4
up to 100  written on a chalk board. You keep erasing two numbers and replacing them with 
their sum until a single number remains on the board. What number will that be?   

 
 

 

MECHANICS PRACTICE 
 
Practice 6.3 Compute each of these sums in a way that feels efficient to you. 
 
a) 19 + 18 + 16 + 2 + 4 + 1 
b) 46 + 294 
c) 998 + 875 
d) 199 + 199 + 199 + 199 + 199 + 7 
e) 19 + 18 + 18 + 19 + 17 + 9 
f) 37 + 72 + 11 
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OPTIONAL ADDENDUM 
 
You may have heard the terms commutative property of addition and associative property of 
addition. These are not important to know, but if you are curious, they are both to do with the notion 
that “order does not matter” when computing addition problems. 
 
The commutative property refers the fact that we can change the order of two numbers we are 
adding. We have that  𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎 no matter which counting numbers 𝑎𝑎 and 𝑏𝑏 represent. We saw 
this in section 2.  
  

 
 
The associative property refers to the fact that we can change the order we choose to conduct the 
two summations in a sum of three numbers. To illustrate what I mean, here’s a picture of 2 + 3 + 4. 
 

 
 

We can compute the left addition first and the right addition second, if we like, or the right addition 
first and the left addition second. They both lead to the same result in the end (as we know they must 
from our solitaire game).  
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7. Ordering Multiplications 
 

Here’s another game of solitaire. 
 

 

 
Again, write the numbers 1, 2, 3, 4, 5, and 6 on a page.  
 

 
 

This time, instead of erasing two numbers and replacing them with their sum, replace them with their 
product, the two numbers multiplied together.  
 
For example, if you cross out 3 and 5 you will then write 15 on the page and have the numbers 1, 2, 4, 
6, and 15 to work with. If you next cross out 1 and 15, you will replace them with 15, their product 
(got that?) and be left with 2, 4, 6, and 15. And so on. 
 
Each move has you erasing two numbers and writing one number, so the count of numbers on the 
page steadily decreases.  
 
With which single number is this game sure to end? 
(How do you know it is going to be the same number each and every time you play?) 
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It seems the game ends with the number 720 no matter how you choose to play.  
 
This is the value of product 1 × 2 × 3 × 4 × 5 × 6 computed from left to right, two numbers at a time, 
just as school teaches you how to evaluate a string of numbers multiplied together.  

And again, the solitaire game seems to be leading us to say:  

 

In any string of counting numbers multiplied together,  ...a b c d e y z× × × × × × ×  it 
does not matter in which order one chooses to do the individual multiplications. The 
same answer will always result. 

 

Can we justify this?  
 
We certainly have that the order in which you multiply two counting numbers together does not matter: 
𝑎𝑎 × 𝑏𝑏 and 𝑏𝑏 × 𝑎𝑎 are sure to have the same value no matter which numbers 𝑎𝑎 and 𝑏𝑏 represent. We saw 
this in section 3. 

 

 

What about three counting numbers multiplied together? Can we explain why “order doesn’t matter” 
when computing 2 × 3 × 4 for instance?  
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Remember, school world has us compute 2 × 3 × 4 from left to right. We look at 2 × 3 first to get 6, 
and then compute 6 × 4 next to get 24. 

 
 

How do we draw a picture of this? 
 
Start, we can draw 2 × 3 as two groups of three dots drawn in a rectangle.   

 

 

 

And now we need to draw  2 × 3 × 4 , which is “2 × 3 groups of 4,” whatever that means.  
 
 

Question: Think about this before turning the page. It took me a little while to figure out what 
one could draw here. I am curious if we come up with the same approach. 
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I went to the third dimension! 

 

Here’s a three-dimensional picture of 24 dots arranged in a box-like arrangement. The front face is 
picture of 2 × 3 and each dot in that picture extends 4 dots deep into the page. 

But when I look at my picture, I also can’t help seeing two horizontal layers of dots, and that each layer 
is a picture of 3 × 4. (Can you see that too?) The picture is also one of 2 copies of 3 × 4. 

 

This picture explains why we can compute 2 × 3 × 4 by focusing on 2 × 3 first to get 6 × 4 or by 
focusing on 3 × 4 first to get 2 × 12. Both are these 24 dots viewed two different ways.  
 
And we can go further.  
 
If I focus in columns first and rows first, I can interpret the front face of dots as 3 × 2. The whole three-
dimensional picture is thus also “3 × 2 groups of 4,” which is  3 × 2 × 4. 
 

Or, I can look at the right face of dots and see “2 × 4.” And each of those dots is the end of a row of 3 
dots. So, the picture also looks like “2 × 4 groups of 3,” which is  2 × 4 × 3. 
 
Or, I can see 3 copies of that vertical 2 × 4 face of dots, which is  3 × 2 × 4 but with computing the 
second multiplication first.   
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Or, I can see the picture as 4 × 3 groups of 2 dots, which 4 × 3 × 2. Or as 2 copies of 4 × 3, which is  
2 × 4 × 3 but with the second multiplication computed first.  

 

Question: Come up with yet another way to interpret the three-dimensional picture.  
 
 

 

 

 
 
We can keep playing this confusing game of switching perspectives on this single picture and explaining 
why we are not changing anything. All these values are the same  
 

2 × 3 × 4 = 3 × 2 × 4 = 3 × 4 × 2 
        = 2 × 4 × 3 = 4 × 2 × 3 = 4 × 3 × 2  
 

even with compute the second multiplications first (which goes against the grain of the school way).  
 
 
We’re seeing, for sure, that the order in which you compute  2 × 3 × 4 —be it the order of the numbers 
or the order of which of the two multiplications you compute first—just doesn’t matter. And, of course, 
there is nothing special about the numbers 2, 3, and 4 here: we can imagine a three-dimensional picture 
of any size.  
 

This is great!  
 
By looking at a two-dimensional figure we’ve explained why order doesn’t matter for computing a 
product of two numbers, 𝑎𝑎 × 𝑏𝑏. 
 

And by looking at a three-dimensional picture we’ve explained why order doesn’t matter for computing 
a product of three numbers, 𝑎𝑎 × 𝑏𝑏 × 𝑐𝑐. 
 
But I am nervous. For a product of four numbers do we need to draw a four-dimensional picture? (I 
don’t know what that would mean!) 
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Let’s hold off on justifying matters for products of four or more numbers for right now. (We’ll come back 
to it later as there’s got to be a better way than going to the fourth dimension!) 

But if we do trust that order does not matter for multiplication, then we can sometimes use that idea to 
our advantage.  
 
For example, here’s a nice way to compute 35 × 14. Think of 35 as 5 × 7 and 14 as 2 × 7.  

Then  

 35 × 14 = 5 × 7 ×  2 ×  7 

And can you see that this is 10 × 49 to give 490? 

 

Question: Compute each of these products in a similar manner. 

a) 15 × 12 
b) 28 × 25 
c) 68846 × 50 
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MUSINGS 
 
Musing 7.1 Katya wondered about the two ways to interpret 2 3 4× ×  and thought she could go back 
to the idea of repeated addition. She thought about matters and then wrote 
 

3 4×  is 4 4 4+ +  
 
2  copies of 3 4×  is 4 4 4 4 4 4+ + + + +  (using an underline to make each copy clear) 

and 

“ 2 3×  copies of 4 ” is 
4 4 4
4 4 4

. 

 
But then she wasn’t sure if what she was writing was helpful, or even meaningful.  
 
What do you think? 
 
 
Musing 7.2 OPTIONAL 
 
Here's a third variation of the solitaire game that combines addition and 
multiplication. Again, start with the numbers 1 through 6 on a page.   
 
Erase two numbers and replace them with their sum and their product added together.   
 
For example, if you cross out 3 and 5 you will then write 23 on the page. (This is 8, their sum, and 15, 
their product, added together.) If you then cross out 2 and 4 you will write 14 on the page. (This is 6 
and 8 added together.) 
 
a) Do you see the same final number each and every time you play the game? 
 
b) What final number do you if you start with just 1 through 5 instead? Just 1 through 4? 1 through 3? 
Just 1 and 2? Is there a pattern to these final numbers?  
 
Hard Very Optional Challenge: Going back to starting with the numbers 1 through 6, can you explain 
why the same final number appears each time you play the game, no matter the choices you make 
along the way?  
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MECHANICS PRACTICE 
 
Musing 7.3 Compute each of these products in a way that feels efficient to you. 
 

a) 25 × 36 
b) 5 × 216 
c) 5 × 846044288 
d) 15 × 6 × 15 × 6 
e) 72 × 125 × 35 × 84 × 55 × 0 × 25 × 15 × 8 

 
 

OPTIONAL ADDENDUM 
 
You may have also heard the terms commutative property of multiplication and associative property 
of multiplication. If you are curious, they are the official names of the two properties we discussed 
and explained in this section. 
 
The commutative property refers the fact that we can change the order of two numbers we are 
multiplying. We have that  𝑎𝑎 × 𝑏𝑏 = 𝑏𝑏 × 𝑎𝑎 no matter which counting numbers 𝑎𝑎 and 𝑏𝑏 represent.  
  

 
 

The associative property refers to the fact that we can change the order we choose to conduct the 
two multiplications in a product of three numbers.   
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8. The Vinculum 
 

Going back to additions, consider again 2 3 4+ + .  

If I were a fussy sort, I might insist that you think this through by adding 2 and 3 together first to get 5
and then add 4 . Or I might insist that you compute 3 4+  first to think 7 , and then compute 2 7+ . 

The question is: How might I communicate to you the order I insist you conduct the two additions? 

 

Back in 1484, French mathematician Nicolas Chuquet wrote a manuscript in which he used a horizontal 
bar to denote an intended order to operations. Its use became the rage among a good number of 
European mathematicians for the centuries that followed. 

For example, mathematicians would write  

 2 3 4+ +  

if they intended the reader to think 2 7+  to get to 9 , or 

 2 3 4+ +   

if they want the line of thought to be 5 4 9+ = . 

 

The horizontal bar was—and still is—called a vinculum, from the Latin word for “bond” or “tie,” as it 
suggests which terms of an expressions are “tied together” and to be handled first. Some 
mathematicians liked to write their vincula on top of an expression (like I do) and others preferred to 
write them as underlines (like Chuquet preferred).   
 

If I had to choose a favorite mathematical symbol, I would choose the vinculum. I just think it is neat! For 
example, here is a mighty complicated expression loaded with nested vincula. But despite its 
complexity, it is clear how I am meant to think my way through it. 

2 4 2 8 17 1 9 10 7 1+ + + + + + + + +  

 

(Can you see—literally see!—that one is to think 10 , then 20 , then 37 , then 45 , then 52 , then 54 , 
then 58 , then 60 , and then, finally, 61?) 
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There are some natural conventions people have settled on for working through vincula. 

 

1. If a mathematical expression has a vinculum placed on it, compute what is under the vinculum 
first.  

For example, 5 3 7× +  is 50 . (Can you see this?) 

 

2. If there are nested vincula, work with the innermost vinculum first and proceed from there. 

 

For example, 10 4 3 2 3+ × + ×  is 70 . (Check this.) 

 

3. If there are two or more “equally nested” vincula, work them out in any order you like (left to 
right, or right to left, or simultaneously).  

 

 

For example, 2 3 4 1+ × +  has two “equally deep” vincula. This is to be computed as 5 5× , giving 25 . 

 

Unraveling 5 4 4 2 3 2+ × × + ×  first gives  

5 16 2 3 2+ × + ×  (the innermost vinculum) 

and then  

5 32 6+ +  (from equally nested vincula), 

and then 5 38+ , to give 43 . 

 

Question: Can you see that that value of 5 + 5 + 6 × 4 − 4 × 2 is ninety?   
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Reducing the Number of Vincula 

To cut down on the abundance of vincula in an expression, mathematicians have settled on another 
convention. 

Assume every multiplication sign comes with its own hidden vinculum above the two numbers 
being multiplied.   

For instance, 2 3 4+ × is to be understood as 2 3 4+ × , and so equals 14 .   

And 7 5 3 1× + ×  is to be understood as 7 5 3 1× + × , which equals 38 . 

  

A tricker example is 

 2 3 4 5 4× + + × . 

This is to be unraveled as  

 2 7 5 4× + × , 

which is 

 2 7 5 4× + × , 

giving 14 20+ , which is 34 . 

 

You may have been taught an “order of operations” rule in school which says something like: 
  

Do multiplications before doing additions.  
 
So, in 2 3 4+ × , one is to compute 3 4 12× =  first and then compute 2 12 14+ = .  
 
This is just our rule for vincula with the (hidden) vinculum over the product: Always do vincula first!   
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Getting a bit ahead on matters … 
 
People don’t use the vinculum anymore—except in three places.  
 
In 1631, English mathematician Thomas Harriot suggested it might be a good idea to attach a 
vinculum to this symbol √ used for square roots. (This symbol is called a radix, by the way.) For 
example, an expression like  
 
 √ 9 16+  
 
is ambiguous. Is this the square root of 9  (which is 3 ) with 16  later added to give the answer 19 ?  
Or is this the square root of the entire quantity 9 16+  , which is 25 , to give the answer 5 ?  
 
The vinculum clarifies matters. 
 

 
9 16 3 16 19

9 16 25 5

+ = + =

+ = =
 

 
Most people today do not realize that  is two separate symbols combined.  
 
 
In 1647 Italian mathematician Bonaventure Cavalieri used the vinculum in his geometry book. If A  
and B are the names of two points in space, he suggested using the notation AB  for the line 
segment that “ties” them together. This is now standard notation in geometry books.  
 
 
Today, people in some countries (the US included) use a vinculum to denote a group of digits that 
repeat in an infinitely long decimal. For example, we have 
 

1 0.142857 0.142857142857142857142857...
7
= =  

1 0.3 0.3333333.....
3
= = . 

 

Folk in other parts of the world might write 0.142857
• •

 or 0.(142857)  or , for instance, 

for the repeating decimal representation of 
1
7

.) 
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MUSINGS 
 
Musing 8.1 There are 2  ways to place a vinculum in the expression 1 2 3+ + . 
 

1 2 3+ +                       1 2 3+ +  
 

There are 5  ways to place vincula in the expression 1 2 3 4+ + +  so that one is only adding two 
quantities at a time.  
 

1 2 3 4+ + +               1 2 3 4+ + +  

1 2 3 4+ + +               1 2 3 4+ + +  

                   1 2 3 4+ + +  
 

Care to list the 14 ways to list vincula in the expression 1 2 3 4 5+ + + + ? 
 
Care to list the 42 ways to list vincula in the expression 1 2 3 4 5 6+ + + + + ? 
 
Some people like to say there is 1 way to place vincula in the sum 1 2+ , namely, to not do anything 
and just leave it as it is as there is no need for one.  
 
We are developing a list of “vinculum numbers”: 1, 2 , 5 , 14 , 42 .  
 
Do you care to guess what the next vinculum number after 42 might be? 
(Remember, the answer can always be: “No. I do not care to guess.”) 
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9. Parentheses/Brackets 
 

Use of the vinculum remained popular all through the fifteen- and sixteen-hundreds and well into the 
seventeen-hundreds, which seems to befuddle some mathematical historians. After all, around the year 
1440, Johannes Gutenberg invented the printing press allowing for the first time the mass production of 
books. Printing lines of text and mathematical symbols was straightforward. But inserting horizontal 
bars between lines of text was awkward and hard to do. Why stay with a notational system that was so 
difficult to print, especially since other symbols for grouping terms were being proffered at the time?  

One alternative was to use parentheses (many people in the world call them brackets) to group terms. 

Instead of writing 2 3 4+ +  and 2 3 4+ + , we could write ( )2 3 4+ +  and ( )2 3 4+ + . And instead of 

writing  

2 4 2 8 17 1 9 10 7 1+ + + + + + + + + , 

which is awfully hard to print by lining up letter and symbol tiles on the printing press table, one could 
write instead 

( )( )( )( )( )( )( )2 4 2 8 17 1 9 10 7 1 + + + + + + + + + 
 

. 

Although this is a bit harder to unravel (but, really, who in their right mind would be writing so many 
nested parentheses in the first place?), it is certainly straightforward to print with a press.  

 

In the mid-1700s, the prominent and prolific Swiss mathematician Leonhard Euler often used 
parentheses for grouping. It seems he helped accustom European mathematicians to their use and they 
remain the preferred grouping symbol to this day.  
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Translating our Vincula Conventions to Parentheses/Brackets Conventions  

Here are our vincula conventions rewritten in terms of parentheses. 

1. If a mathematical expression has a set of parentheses in it, compute what is in the parentheses 
first.  

For example, ( )5 3 7× +  is 50 . 

2. If there are nested parentheses, work with the innermost parentheses first and proceed from 
there. 

For example, ( )( )( )10 4 3 2 3+ × + ×  is 70 . 

3. If there are two or more “equally nested” parentheses, work them out in any order you like (left 
to right, or right to left, or simultaneously).  

For example, ( ) ( )2 3 4 1+ × +  has two “equally deep” parentheses. This is to be computed as 5 5× , 

giving 25 . 

 

 

Unraveling ( )( ) ( )( )5 4 4 2 3 2+ + × + ×  first gives  

( ) ( )( )5 16 2 3 2+ × + ×  (the innermost parentheses) 

and then  

( )5 32 6+ +  (from equally nested parentheses), 

and then 5 38+ , to give 43 . 

 

To cut down on the abundance of parentheses in an expression, mathematicians have settled on 
another convention. 

Assume every multiplication sign comes with its own set of parentheses immediately around the 
two numbers being multiplied. (They’ve simply been made invisible.)   

For instance, 2 3 4+ × is to be understood as ( )2 3 4+ × , and so equals 14 .  And 7 5 3 1× + ×  is to be 

understood as ( ) ( )7 5 3 1× + × , which equals 38 .  
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A tricker example is 

 ( )2 3 4 5 4× + + × . 

This is to be unraveled as 2 7 5 4× + × ,which is ( ) ( )2 7 5 4× + × , giving 14 20+ , which is 34 . 

 

You may have been taught an “order of operations” rule in school which says something like: 
  

Do multiplications before doing additions.  
 
So, in 2 3 4+ × , one is to compute 3 4 12× =  first and then compute 2 12 14+ = .  
 
This is just our rule for parentheses with the (hidden) parentheses around the product:  
 

Always do what’s inside parentheses first.  
 

 Question: Do these last two pages feel like déjà vu? 
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Notations for Multiplication 

As I am sure you are aware, the letter 𝑥𝑥 has quite the favored status in algebra class. (We’ll get to 
algebra.)  But that letter looks awfully similar to the traditional multiplication symbol ×. To avoid 
possible confusion, mathematicians tend to use a raised dot ∙ to denote multiplication. 

For example, 2 3⋅  means 2 3× , and 42 17⋅  means 42 17× . 

 
And sometimes they will not write a multiplication symbol at all—just placing the two quantities to be 
multiplied next to each other if no possible confusion could result. 

For example, instead of writing ( )2 3 7⋅ +  mathematicians will drop the dot, and write 

 ( )2 3 7+ . 

If a represents a number, instead of writing 3 a⋅ , mathematicians will write 

 3a . 

 

Question: Mathematicians would never drop the dot in 23 17⋅ . Can you see why? 

 

This leads to odd looking expressions every now and then. For example, in computing  

( )( )3 7 4 9+ +   

one might write ( )( )10 13  and wonder why there are parentheses around the single numbers.  

Nonetheless, one recognizes this as 10 3⋅  to get the answer 30 . 

 

In computing ( )5 83 17+  one might find oneself writing ( )5 100 , which is to be recognized as 5 100⋅ . 

 

To prepare students for this, some elementary school curricula explicitly state that ( )a b  and ( )( )a b  

and ( )a b  are each alternative notations for a b× .  I personally suspect that this must seem weird and 

confusing to young’uns.  
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MUSINGS 
 
Musing 9.1 Try writing these two expressions with vincula instead of parentheses. Show the hidden 
vincula as well. 
 

a) ( ) ( )( ) ( )4 2 3 3 7 1 2+ ⋅ + + + +  

b) ( )( )( )1 1 1 1 1 1+ + + + ⋅  

 
Try writing these two expressions in terms of parentheses. Let’s keep the hidden parentheses hidden 
this time. 
 

c) 2 3 4 5 6⋅ + ⋅ +  

d) 8 8 8 8 8 8 8⋅ + ⋅ ⋅ + ⋅  
 
 

 

 

MECHANICS PRACTICE 
 
Musing 9.2 Evaluate the following expressions in the order indicated via the parentheses and the 
multiplications. 
 

a) 3 2 11+ ⋅  
b) 4 3 3 5 2⋅ + ⋅ +  
c) ( )6 2 3+  

d) ( )1 1 3 8+ ⋅ ⋅  

e) ( )( )( )2 6 4 1 5 3 2 7 6 3 3 10 4+ + + + ⋅ + + ⋅ + ⋅  
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10. A String of Sums; A String of Products 
 

We argued in section 6 that  

In any string of sums of counting numbers ...a b c d e y z+ + + + + + +  it does not matter in 
which order one chooses to perform the additions. The same answer will always result.   

 

This means that it does not matter how you might choose to place parentheses in a string of sums such 
as 

2 3 4 5 6+ + + + , 

the final result will always be the same.   
 

We have that ( )( )( )2 3 4 5 6+ + + +  gives the same answer as ( ) ( )( )2 3 4 5 6+ + + + , which gives the 

same answer as ( )( )( )2 3 4 5 6+ + + + , and so on. For this reason:  

 

People never bother to put parentheses in a string of sums. 

 

We also wondered in section 7 if the following is true.  

 

In any string of products of counting numbers ...a b c d e y z× × × × × × ×  it does not matter in 
which order one chooses to do the individual products. The same answer will always result. 

 

Often people just assume this is true as well. In which case, there is no need for grouping terms with 
parentheses.   

 

People never bother to put parentheses in a string of products. 

 

For example, in computing 2 3 4 5 6× × × ×  it does not matter in which order one chooses to conduct 
the products. There is no need for parentheses. 
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Back in section 7 we drew pictures to justify why “order does not matter” when computing a product of 
two or three numbers: A two-dimensional picture explains why, philosophically, 4 × 5 and 5 × 4 have 
the same answer, and a three-dimensional picture explains why (2 × 3) × 4 and 2 × (3 × 4) must be 
the same too.  
 
We have that  

 (𝑎𝑎 × 𝑏𝑏) × 𝑐𝑐 = 𝑎𝑎 × (𝑏𝑏 × 𝑐𝑐) for any three of counting numbers 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐. 
 

We were worried back in the section we would have to somehow draw four-dimensional pictures to 
justify why “order does not matter” when computing a product of four numbers. 
 
Let’s attend to this now without going to the fourth dimension!  
 
 
WARNING: The remainder of this section is optional reading and is not for the faint-hearted!  
 
Feel free to just accept that it is possible to justify our intuition that “order doesn’t matter” for any 
string of numbers multiplied together, no matter the how many numbers are in that string.  

  
There are five ways to group a string of four numbers multiplied together.  

 
( )( )

( )( )
( )( )

( )( )
( ) ( )

a b c d

a b c d

a b c d

a b c d

a b c d

× × ×

× × ×

× × ×

× × ×

× × ×

 

 
Our job is to explain why all five presentations of 𝑎𝑎 × 𝑏𝑏 × 𝑐𝑐 × 𝑑𝑑 must have the same value. 
Here goes!  

 
The first and second items in the list give the same answer because we have that 
( ) ( )a b c a b c× × = × × . (This is what we know about a product of three numbers.) 

 
The third and fourth items in the list give the same answer because we have that 
( ) ( )b c d b c d× × = × × . (Again, what we know about a product of three numbers.) 

 
The second and fourth items in the list give the same answer because we have that 
( ) ( )a M d a M d× × = × ×  where M  just happens to be (𝑏𝑏 × 𝑐𝑐). (Sneaky!) 

 
So, this means the first four items on the list are sure to give the same answer. 
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The third and fifth items give the same answer too, as ( ) ( )a b W a b W× × = × ×  where W  just 

happens to be (𝑐𝑐 × 𝑑𝑑). 
 
This means that all five possibilities do indeed give the same answer! 
 
Our belief about products of three terms led us to believe the same for products of four terms.  

 
In the same way, one can show that all the ways of interpreting a product of five terms must give the 
same answer (by seeing all the possible products as examples of what we just showed is true about 
products of four terms), as do all the ways to interpret a product of six terms (by seeing what all the 
possible products as instances of what we will have just showed true about products of five terms), and 
one of seven terms, and so on. 
 

MUSINGS 
 
Musing 10.1 Show that there are 14  ways to compute a b c d e× × × ×  so that one is conducting 
only a product of two terms at a time.  
 
(Actually, don’t bother with this question. It is really a repeat of Musing 8.1. Do you see why? Also, 
this section showed that all the ways to compute this product lead to the same answer, so who cares 
about parentheses anyway in this context?)  
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11. Chopping up Rectangles 
 

Let’s revisit an idea from section 4.  
 
Here’s a depiction of 4 5× . 

 

Figure 4 5×  again 

 
If we chop up the rectangle, we see we could also interpret the figure as 4 3 4 2× + × , or 
as 3 3 1 3 3 2 1 2× + × + × + × , or as many other combinations of products.  
 

       

 

 

 

 

Figure 4 3 4 2× + ×    Figure 3 3 1 3 3 2 1 2× + × + × + ×   
  

Notice: We’re making use of the hidden parentheses/vinculi that come with multiplication signs.  
 
Each sum of products is, of course, 20 . 

 

 4 3 4 2 12 8 20× + × = + =  

 3 3 1 3 3 2 1 2 9 3 6 2 20× + × + × + × = + + + =  
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Consider this next figure. 

 

Figure: A lot of dots 

It can be interpreted as  

 ( ) ( )3 7 4 6 5+ × + +  

(which is 10 15× , showing that there are 150  dots in this picture), or as sum of six products 

 3 4 3 6 3 5 7 4 7 6 7 5× + × + × + × + × + ×  

(which corresponds to 12 18 15 28 42 53+ + + + + , adding to 150 ). 

 

Rather than keep drawing rectangles of dots, let’s just draw rectangles, viewing each rectangular region 
is an array of dots. In this figure we imagine there are 3 4 12× =  dots in the top left region, and 
7 6 42× =  dots in the middle bottom region, and so on. 

 

Figure ( ) ( )3 7 4 6 5+ × + +  
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As mentioned in section 4, people call these rectangle pictures examples of the area model of 
multiplication. If we replace each dot with s unit square tiles, a 4 -by- 5  array has area 4 5 20× = square 
units.  

 

Figure 4 5×  as a region of area 20  

The previous picture shows a 10 -by-15  array, of area 150 square units, divided into six pieces, one of 
area 3 4 12× =  square units, and one of area 7 6 42× = square units, and so on. Whether we count 
dots, or count square units and imagine areas, our arithmetic is the same.  

This visual representation of multiplication help us with multi-digit multiplication.  

 Example: Compute 23 37× . 

 Answer 1: Ask Alexa or Siri. 

Answer 2: The question is asking “How many dots are there in a 23-by-37 array of dots?” or, 
equivalently, “What is the area of a 23-by-37 rectangle?”  

The numbers are awkward. But let’s simplify matters by chopping up the rectangle into regions 
that involve friendlier numbers. Let’s think of 23  as 20 3+  and 37  as 30 7+ . This divides the 
rectangle into four regions whose areas are easier to compute. 

 

We see that the area of the rectangle (or, the total number of dots in the array if you are 
thinking dots) is 600 140 90 21 600 (130 100) 21 851+ + + = + + + =  square units.  

That is, 23 37 851× = . 

(I could almost do this computation in my head by visualizing the rectangle.)  
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Example: Compute 371 42× . 

Answer 1: Use your smartphone. 

Answer 2: This picture does the trick.  

 

 

371 42 12000 2800 40 600 140 2 15582× = + + + + + =  

It doesn’t matter that our rectangles are not drawn to scale. We just need to make sure the information 
presented on each diagram is correct. 

Question: Does it matter if the first number mentioned in the product is written along the rows 
or along the columns of the rectangle? (Were you expecting a slightly different picture for 
371 42× ?) 

 

 Example: Compute ( )( )4 5 3 7 1+ + + . 

 Answer 1: This is just 9 11 99× = . 

Answer 2: In terms of chopping up rectangles, we also see the answer 99—with a lot more work 
along the way! We are summing the areas of six individual pieces to get there. 

( )( )4 5 3 7 1 4 3 5 3 4 7 5 7 4 1 5 1
12 15 28 35 4 5
99

+ + + = × + × + × + × + × + ×

= + + + + +
=

. 
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Let’s make matters a tad abstract 

 Example: If a , b , ,c , …, g  are numbers, what is ( )( )a b c d e f g+ + + + + ? 

 Answer: Geometrically, it is a rectangle chopped into twelve pieces.  

 

Those pieces are: 

 ( )( )a b c d e f g ae af ag be bf bg ce cf cg de df dg+ + + + + = + + + + + + + + + + + . 

 

Examine the sum of twelve terms we see in the previous example. Each term in the sum matches a piece 
of the rectangle and it comes from multiplying one number displayed along the left side of the diagram 
with one number displayed along the top. 

That is, to “expand” ( )( )a b c d e f g+ + + + + , we must select one term from the first set of 

parentheses, one term from the second, multiply them together, and add the results. We need to make 
sure to attend to all possible combinations. 

 

Figure The mechanics of expanding brackets 

 

As there are 4 ways to choose an entry in ( )a b c d+ + +  (task 1) and 3  ways to choose an entry in 

( )e f g+ +  (task 2), there are indeed a total of 4 3 12× =  products to write in the sum.  
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Question: Computing ( )( )7 3 4 5)+ + corresponding dividing a rectangle into four pieces. One 

piece is 7 4× , another is 3 4× , and so on. Can you see this?  (Draw a picture.)  
 
Can you also see that the products 7 3×  and 4 4× do not correspond to valid pieces? 

  

Question: Computing 100 100×  as ( )( )50 20 20 7 3 20 20 20 20 19 1+ + + + + + + + +

corresponds to dividing a rectangle (a square, actually) into 5 6 30× = pieces.   
 
There are four pieces of size 7 20× .  
There is just one piece of size 50 19× .   

How many pieces of size 20 20× are there? 

 

Let’s have some fun. 

 What does ( )( )( )2 3 4 5 6 7+ + + correspond to geometrically? 

This is just the product 5 9 13 585× × =  written in a complicated way, but what is the picture to go with 
this product? Are we chopping up rectangle? 

 

Think about this before turning the page. 
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We have that ( )( )( )2 3 4 5 6 7+ + +  corresponds to chopping a three-dimensional rectangular box into 

eight pieces. 

 

Figure ( )( )( )2 3 4 5 6 7+ + +  

 

Here are the eight pieces. 

( )( )( )2 3 4 5 6 7 2 4 6 2 4 7 2 5 6 2 5 7
3 4 6 3 4 7 3 5 6 3 5 7

+ + + = × × + × × + × × + × ×

+ × × + × × + × × + × ×
 

And this sum does indeed add to 585 if you have the patience to check. 
 

 
 5 ∙ 9 ∙ 13 = 48 + 56 + 60 + 70 + 72 + 84 + 90 + 105 = 585 

   

Again, we are selecting one term from each set of parentheses, multiplying them together, and adding 
the results, making sure to attend to all possible combinations.  
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Example: Expanding ( )( )( )x y z a b c d r s+ + + + + +  corresponds to chopping a three-dimensional 

box into 3 4 2 24× × =  pieces. One of the pieces is xar  and another is ycs , and so on.  

 

 

   

Example: Imagine expanding ( )( )( )x y x a b a c p+ + + + + . 

a) How many pieces would there be? 
b) Would  xac  be one of those pieces? How about cay ? xcp ? xax ? xyc ? 

Answers:  

a) There would be 18 terms in the final sum. 
b) Yes, xac  would appear.  

cay  appears as yac . 

xcp  does not appear. 

xax  appears as xxa  

xyc appears as yxc . 

 

Example: If you were to expand  

 ( )( )( )( )a b c d e w x a b x t r e f+ + + + + + + + + +  

how many terms would there be? (Is there a geometric interpretation for this scenario?) 
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Answer: It seems we’re in four-dimensions now! But we do suspect the same arithmetic will be at play: 
There will be 5 2 5 2 100× × × =  terms and the resulting expansion would look like awae bwae+ + .  

If we trust that the mechanics of two-dimensional rectangles and three-dimensional rectangular boxes 
continues to hold in all situations (even if I don’t know that the fourth dimension is) it seems we have 
another natural belief about arithmetic.  

 

To compute the product of sums of terms, select one term from each set of parentheses, 
multiply them, and then sum all the results. Make sure to attend to all combinations. 
 
For example, 

( )( )a b c x y w z ax bx cx ay by+ + + + + = + + + + +  

 
( )( )2 2 2x a b xa xb a b+ + = + + +  

 
( )( )x y p q xp yp xq yq+ + = + + +  

 

Many textbooks focus on just one example of “chopping up a rectangle.” 

 
Figure ( )a b c ab ac+ = +  

 

If we take the expression ( )a b c+  and place parentheses around the single term to write  

 ( )( )a b c+  

then the process of “selecting one term from each set of parentheses” has us selecting the term a  from 
the first set of parentheses each and every time and so the sum ab ac+  results, just as the diagram 
suggests. 

 Question: Draw a picture of (𝑎𝑎 + 𝑏𝑏)𝑐𝑐 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏.  
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Have you noticed …? 

When a number is multiplied by itself, we say that the number is squared. (This came up in Musing 4.1.)  

We use a superscript two to denote this. For example,  

 25 5 5= × =  “five squared.” 

This choice of wording makes sense as the area of a five-by-five square is computed as 5 5× . 

 

Figure 25 5 5= ×  

We use the superscript three to denote a three-fold multiplication of the same number. We call that the 
number cubed. 

 35 5 5 5= × × =  “five cubed.” 

This choice of wording makes sense as the volume of a five-by-five-by-five cube is computed as 5 5 5× × . 

 

Figure 35 5 5 5= × ×  

There is a reason why we humans don’t have special words for 45 5 5 5 5= × × ×  and 
55 5 5 5 5 5= × × × × , and so on. We just can’t envision matters beyond the third dimension!  
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MECHANICS PRACTICE  
Musing 11.1 One can compute ( )( )2 3 7 4+ +  two ways: 

 
Short way:  ( )( )2 3 7 4 5 11 55+ + = ⋅ =  

Long way: ( )( )2 3 7 4 2 7 2 4 3 7 3 4 28 8 21 12 55+ + = ⋅ + ⋅ + ⋅ + ⋅ = + + + =   

 
Compute each of the following both the short way and the long way. 
 

a) ( )( )3 4 5 1+ +  

b) ( )( )( )2 3 5 2 8 1 9+ + + +  

 
Musing 11.2 

a) Expand ( )( )a x b x y+ + + . 

b) If one were to expand ( )( )x y z w t r a b c d e f g h+ + + + + + + + + + + +  how many 

terms would there be in the resulting sum? 
 
Musing 11.3 
I can compute 13 26×  by imagining drawing (or actually drawing, that is okay too!) a rectangle that 
looks at this product as ( )( )10 3 20 6+ + . I can then see that the answer is  

 
200 60 60 18 320 18 338+ + + = + = . 

 
Compute each of the following products the same way.  
Use technology to check that your answers are correct. 
 

a) 23 14×  
b) 106 21×  
c) 213 31×  

 
Musing 11.4  
If one were to expand ( )( )( )( )2 2 3 3p q p a q p x q+ + + + + + + + , which of the following would 

be a term you would see in the sum of 72 terms that result? 
 

a)  33p     b)  26 p      c) 33q        d)   18      e)  2xq p      
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12. Fun with Long Multiplication 
 

We saw that a natural way to compute a multi-digit multiplication problem such as 23 12×  is to use the 
area model. 

 

Figure ( )( )23 12 20 3 10 2× = + +  

Some school students today are taught to compute long multiplication via a method of “partial 
products,” which is just the area model in disguise. (It would be easier if students were shown and then 
allowed to draw chopped up rectangles.)  

Question: Do you see how the computation on the right in the figure above is indeed just the 
area model? (How are students taught this approach without drawing a rectangle? Hmm.) 

During the 1500s and the centuries that followed, paper and ink were precious. The “partial product” 
algorithm was compactified to save ink. It is the algorithm most students are still taught, even though 
ink is no longer precious. (In fact, asking Siri for the answer uses no ink whatsoever!)  

 

Figure 23 12×  the traditional way. 

  

Question: Were you taught to compute 23 12× , say, this compactified way? 

  



 
 
 

74 
CHAPTER 1 

 
 

Question: In section 3 we looked at 173 985×  versus 985 173× . 

 

Figure 173 985×  versus 985 173×  

Can you see now that if we were to compute each of these products via the “partial products” 
method (that is, via the area model), that there is actually nothing mysterious going on here? 

 

One nice thing about drawing rectangles when computing long multiplications is that the units, tens, 
hundreds, and so on, all line up nicely along diagonals. (It helps to write numbers on the right rather 
than the left to see this.) 

 

Figure ( )23 12 (20 3) 10 2 200 70 6× = + + = + +  

One can have fun with this as the two musings for this section show.  

 

Warmup:  Draw an area model picture for 218 43×  and add up the diagonals of the picture. Do 
you see the answer of 9374 appearing?  
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MUSINGS 
 
Musing 12.1 Here’s a mighty strange way to conduct long multiplications.  
 
To compute 22 13× , for instance, start by drawing two sets of vertical lines, the left set containing 2 
lines and the right set also containing two lines. (These match the digits of the number 22 .) Also draw 
two sets of horizontal lines, the upper set with just 1 line and the lower set 3 lines (to match the digits 
of the number 13 ).  
 
There are four clusters of intersection points. Count the number of intersection points in each cluster 
and add the counts diagonally as shown. The answer 286 appears.  
 

 
 
There is one caveat as illustrated by the computation of 246 32× . 
 

 
 
The answer of 6 thousands, 16 hundreds, 26 tens, and 12 ones, that is,  
6000 1600 260 12 7872+ + + = , appears. One might have to “carry” some digits to read off the 
answer. 
 

a) Compute 131 222×  via this method. 
b) Compute 54 1332× via this method. 
c) How best should one compute 102 3001×  (which equals 306102 ) via this method? 
d) Why does this line method work? 
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Musing 12.2 During the 1500s in England, students were taught to compute long multiplication 
following the galley method, also called the lattice method. (Today, it is also referred to as the 
Elizabethan method.)  
 
To compute 218 43× , say, draw a two-by-three grid of squares. Write the digits of the first number 
above the columns of the grid and the digits of the second number to the right of the rows as shown.  
 
Divide each cell of the grid with a diagonal line and write the product of the column digit and the row 
digit of each cell as a two-digit answer in that cell, but with its two digits split across the diagonal of 
that cell. (If the product is just a one-digit answer, write a 0 for the first digit of the “two-digit 
answer.”)  
 

 
 
Add the entries in each diagonal, “carrying” any digits over to the next diagonal, if necessary, and 
read off the final answer. (Okay, this uses a lot of ink!)  
 
In our example, we get 0 | 8 |13 | 7 | 4 , but a carry of a “1” makes this 09374 . We see that 
218 43 9374× = . 
 

a) Compute 5763 345×  via the galley method to get the answer 1988235 . 
b) Explain why the galley method is really the area model in disguise. (What is the specific 

function of the diagonal lines?)  
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Musing 12.3 (DEFINITELY OPTIONAL!) 
Here’s a mighty unusual way to compute long multiplication. Let’s illustrate it by computing 
341 752× to obtain the answer 256432 . 
 
Start by writing each number on a strip of paper, but write the first number backwards (and the 
second number forwards). 
 

 
 
Starting with the first strip to the right and the second strip to the left, slide the first strip leftwards 
and the second strip rightwards until two digits align vertically. Record their product. 
 

 
 
Keep sliding the strips recording the sums of the products the digits that align as you go along. 
 
Write the answers you obtained in diagonally, as shown, and sum the columns. The answer 256432
appears!  
 

 
 

a) Compute 231 121×  via the traditional school method and then again with this paper-strip 
method. Do you see similarity between the two methods? 

b) Calculate 341 752× via the traditional school method. Do you still see similarity that 
approach and the paper-strip approach? 

c) Can you explain, in general, why the paper-strip approach works? 
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13. Some Factoring 
 
We’ve seen how to chop up rectangles to play with multiplication problems in clever ways.  
 
School books tend to focus on just one type of rectangle-chopping, namely, rewriting 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) as 
𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎. 

 
 

 
 
And they also focus on applying this arithmetic fact backwards, namely, to recognize a quantity of the 
form 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 as 𝑎𝑎(𝑏𝑏 + 𝑐𝑐). 
 
People call this backward act factoring. (Folk of British descent call it factorising.)  
 
For example, for 6 + 14,  we can “factor out a 2” by recognizing this quantity as 2 × 3 + 2 × 7 , and so 
rewrite it as 2(3 + 7). (Why one would want to do this is not at all clear!)  
   
 

 
Figure ( )6 14 2 3 7+ = +  

 
In the same way we can see  
 

( )3 6 3 2a b a b+ = +   

 
by “pulling out a common factor of 3,” and that  
 
 10𝑝𝑝 + 5𝑝𝑝𝑝𝑝 = 5𝑝𝑝(2 + 𝑞𝑞) 
 
by “pulling out a common factor of 5𝑝𝑝.” 
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Division  
  
Some elementary school curricula have students compute division problems essentially this way.  
 
Students are often told that division is “multiplication backwards,” so it seems plausible that playing 
with the area model backwards will help. And it does!  
 
Consider problem 165 ÷ 5. Here we are being told that two numbers multiple together to give the 
answer 165 and that one on the numbers is 5. Our challenge is to find the second number.  
 
Here's a picture of the situation.  

 

 
 
 
Students are advised to build up the total area of the rectangle with multiples of five they know. For 
example, we can get to 100 units of area by using 5 × 20 = 100. That leaves us with 65 units to 
contend with.  
 

 
We can now use 5 × 10 = 50 to leave 15 units of area, which, we recognize as 3 × 5. (Great!)   

 
 

 
We see 165 ÷ 5 = 33. 
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MUSINGS 
 
Musing 13.1 If desired, one could factor 70 60+  by writing it as ( )10 7 6+ .  

 

 
 
Factor each of the following expressions in a similar way.  (Drawing rectangles helps.) 
 

a) 50 60 90+ +  
b) 33 99+  
c) 5 5x y+  
d) awq pbw+  
e) 2 3z z xz+ +  

 
 
Musing 13.2 The previous question ‘factored out a 10’ from 70 + 60 to write it as 10(7 + 6). 
 
a) What expression would you write if you “factored out a 1” instead? 
b) What expression would you obtain if you factored out a 1

2
? 

 

 
MECHANICS PRACTICE  
 
Musing 13.3 Compute each of these division problems via the area method. Feel free to check your 
answers with a calculator.  
 
a) 1491 ÷ 7 
b) 555÷ 15 
c) 516÷ 4 
d) 299÷ 13 
e) 2001÷ 23 
 
Musing 13.4 Does the area model for division show remainders? Can you see that 875 ÷ 6 is 145 
with a remainder of 5? Try it!  
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14.  Summarizing the Rules of Arithmetic 
 

Our mathematical journey has begun with a study of the counting numbers and their arithmetic 
properties.  
 
We discovered an operation on the counting numbers called addition that creates from any two 
counting numbers 𝑎𝑎 and 𝑏𝑏 a new number which we write as  𝑎𝑎 + 𝑏𝑏. 

We (did this by drawing two counts of dots in a row, left and right, and then recounting the entire row. 

 
 
 

We also created an operation called multiplication that produces from any two counting numbers 𝑎𝑎 and 
𝑏𝑏 a new number which we write as 𝑎𝑎 × 𝑏𝑏. 

We drew rectangular arrays of dot and thought of such an array as an organized picture of repeated 
groups. (We thus thought of multiplication as repeated addition.)   

 

 

 
By viewing our pictures in different ways, we discovered various “rules” of arithmetic that seem natural 
and right for the counting numbers. 
 
Here’s a list of all the rules together in one spot.  
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Addition 

Rule 1: We can change the order in which we add any two counting numbers and not change 
the final result.  
That is, for any two counting numbers a and b we have that 𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎. 

 

Rule 2: Adding zero to a counting number does not change the value of the counting number.  
That is, for any counting number 𝑎𝑎 we have that 𝑎𝑎 + 0 = 𝑎𝑎 and 0 + 𝑎𝑎 = 𝑎𝑎.  

 
Rule 3: In any string of counting numbers added together  

...a b c d e y z+ + + + + + +    

it does not matter in which order one chooses to perform the additions. The same answer will 
always result. 

 

(Rule 3 is encompasses Rule 1.) 
 

 

Multiplication 

 

Rule 4: We can change the order in which we multiply any two counting numbers and not 
change the final result. 
That is, for any two counting numbers a  and b  we have ab ba= . 

 

Rule 5: Multiplying a counting number by one does not change the value of the counting 
number.   
That is, for each counting number 𝑎𝑎 we have that 1 × a = 𝑎𝑎 and a × 1 = 𝑎𝑎. 
 

Rule 6: Multiplying a counting number by zero gives a result of zero.  
That is, for each counting number 𝑎𝑎 we have that 0 × 𝑎𝑎 = 0 and 𝑎𝑎 × 0 = 0. 
 

(We had to fuss a little bit to make full sense of this Rule 6.) 
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Rule 7: In any string of counting numbers multiplied together  

 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑐𝑐 ∙ 𝑑𝑑 ∙ ⋯ ∙ 𝑦𝑦 ∙ 𝑧𝑧 

it does not matter in which order one chooses to perform the products. The same answer will 
always result. 

 
(Rule 7 encompasses Rule 4, and we had to go to quite some fuss to properly explain it.)  

 

Addition and Multiplication Together 
 

Rule 8: “We can chop up rectangles from multiplication and add up the pieces.” 

 

 

 

These eight rules give the entire the scoop on how basic arithmetic works! 

 

Question: Can you remember the gist of how we got to each rule? (For example, rule 1 comes 
from reading a row of dots from left to right versus from right to left.)  

Of course, feel free to look back at the earlier sections if you want o remind yourself.  
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FORMAL JARGON 
 
Some school curricula insist that students know and use some formal language to describe each of these 
eight principles. If you are interested, here it is. (If you are not, skip this page!) 
 

Rule 1 says that addition is commutative.  
(What is the etymology of the strange word “commutative”? Google it!) 

 
 Rule 2 says that 0  is acting as an additive identity. 

 
The aspect of Rule 3 that refers changing the order you conduct additions is described as 
“addition is associative.” Mathematics books usually focus just on “ ( ) ( )a b c a b c+ + = + + .” 

 
 Rule 4 says that multiplication is commutative. 
 

Rule 5 says that 1 is acting as a multiplicative identity. 
 

Rule 6 doesn’t have an official name in the mathematics community. Some school textbook 
authors call it the zero property. 

 
The aspect of Rule 7 that refers changing the order you conduct multiplications is described as 
“multiplication is associative.” Mathematics books usually focus just on “ ( ) ( )ab c a bc= .” 

 
Rule 8 is called the distributive property. Mathematics books usually focus just on  
“ ( )a b c ab ac+ = + .” 
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Solutions 
 

Coming!  
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