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53. Discovering Decimals 
 
Let’s go back to the machines in Chapter 4 and their Exploding Dots. Something about them has been 
bothering me all this time.  
 
Recall, no matter the machine, we had boxes going to the left as far as we pleased. 
  

 
 
But that seems awfully lopsided! Why can’t we have boxes going infinitely far to the right as well?  
 
Mathematicians like symmetry and so let’s follow suit and now make all our machines symmetrical. Let’s 
have boxes going to the left and to the right.  
 
But the challenge now is to figure out what those boxes to the right mean. 
 
 
Focusing on the 𝟏𝟏 ← 𝟏𝟏𝟏𝟏 machine. 
 
 
Let’s focus on a 1 ← 10 machine and see what boxes to the right could mean for that machine.  
 
To keep the left and right boxes visibly distinct, we’ll separate them with a point. (Society calls this 
point—for base ten, at least—a decimal point.)  
 
 

 
 
 
So, what does it mean to have dots in the right boxes? What are the values of dots in those boxes? 
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Since this is a 1 ← 10 machine, we do know that ten dots in any one box explode to make one dot one 
place to the left. So, ten dots in the box just to the right of the decimal point are equivalent to one dot in 
the 1s box. Each dot in that box must be worth one tenth. (And yes, ten tenths is one:  10 × 1

10
= 1.) 

 

 
 
We have our first place-value to the right of the decimal point.  
 

 
 
In the same way, ten dots in the next box over are worth one dot in the one tenth place.  
 

 
 

And so, each dot in that next box over must be worth one tenth of one tenth. That’s one hundredth. 
(Yes, ten one hundredths do make one tenth: 10 × 1

100
= 10

100
= 1

10
.) 
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We now have two place values to the right of the decimal point.  
 

 
 
And we can keep going: ten one-thousandths make a hundredth, and ten ten-thousandths make a 
thousandth, and so on. 
 

 
 
 
 
Practice 53.1 Show that 10 × 1

1,000
= 1

100
 and 10 × 1

10,000
= 1

1,000
 . 

 
 
We see that the boxes to the left of the decimal point represent place values given by tens multiplied 
together and boxes to the right of the decimal point represent place values given by tenths multiplied 
together.  
 
 

Practice 53.2 Are you clear on why 1
10

× 1
10

× 1
10

= 1
1,000

 and 1
10

× 1
10

× 1
10

× 1
10

= 1
10,000

? 
 
 
We have just discovered the decimal places! 
 

Practice 53.3 What does the prefix deci- or deca- mean in English?  
(How many years are in a decade? In geometry, how many sides does a decagon have?)  
 
Practice 53.4 What might we call the point that separates left and right boxes if we were doing 
this work in a 1 ← 2 machine instead? (There isn’t an official name for one, but can you see why 
it shouldn’t be called a decimal point?) 
 
Practice 53.5 Do all cultures use a point to separate boxes?  
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When people write 0.3, for example, in base ten, they mean the value of three dots placed in the first 
box after the decimal point.  
 

 
 
We see that 0.3  equals three tenths: 0.3 = 3

10
. 

 
 
 
Seven dots in the third box after the decimal point is seven thousandths: 0.007 = 7

1000
. 

 

 
 
 
 

Practice 53.6 What fraction is 0.00008? 
 
 
Comment: Some people might leave off the beginning zero and just write . 007 rather than 0.007. This 
is just a matter of personal taste. I’ve already used both styles of presentation on this page.  
 
 

Question: Some people read 0.6 out loud as “point six” and others read it out loud as “six 
tenths.” Which is more helpful for understanding what the number really is? 
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There is a possible source of confusion with a decimal such as 0.31. This is technically three tenths and 
one hundredth: 0.31 = 3

10
+ 1

100
.  

 

 
 
 
But some people read 0.31 out loud as “thirty-one hundredths,” which looks like this. 
 

 
 

Are these the same thing?  
 

Well, yes! With three explosions we see that thirty-one hundredths becomes three tenths and one 
hundredth.  
 

Some Language 

 
People are a little loose in how they describe a number written with a decimal point and some digits to 
the right of the decimal point.  
 
They might say that the number has been written in decimal notation or that it has been expressed 
simply as a decimal. One might call for the decimal representation of a number, meaning that one is 
meant to express a given number in decimal notation. 
 
The term decimal number means any number that is expressed via decimal notation. 
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One final thought. 

 

Question: What does −0.31 mean?  
 
Answer: Well, 0.31 is the fraction 31

100
 and so −0.31 is this fraction made negative. It’s − 31

100
. 

 

People like to think of negative sign in front of decimal as applying to all of the decimal number. 
For example, if you are thinking of 0.31 as 3

10
+ 1

100
, then −0.31 is 

 

−�
3

10
+

1
100

� =
−3
10

+
−1
100

 

 
Question: Can you see that −3

10
+ −1

100
 is the same as −31

100
, which is − 31

100
? 
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MUSINGS 
 
Musing 53.7   For each picture, write the decimal number the picture represents and the fraction that 
that decimal equals. (For example, anwer to part a is 0.009, which is 9

1000
.) 

 

 
 
 
Musing 53.8 A schoolteacher asked his students to each draw a 1 ← 10 machine picture of the 
fraction 312

1000
.  

 
JinJin drew: 

 
Subra drew: 

 
 
The teacher marked both students as correct.  
 
Are both of these responses indeed valid? Explain your thinking. 
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Musing 53.9 Aparna was asked to compute 22.37 + 5.841. She wrote this answer for her professor. 
 

 
 
Her professor was confused, so she added this picture to her page.  
 

 
 
Her professor was still a bit puzzled, but she had an idea now as to what Aparna might be thinking. 
The professor said “I was expecting to see the answer 28.211. Does your work lead to that answer?”  

 
What could Aparna do next to show her professor that 2|7.11|11|1 is indeed the number 28.211 in 
disguise?  
 
 
Musing 53.10 Tijana said that 23.56 × 11 equals 22|33.55|66.  
Can you explain what she is thinking and how to fix her answer to one that society understands?  
 
 
Musing 53.11 Can you explain using dots and boxes in a 1 ← 10 machine why 22.37 × 10 equals 
223.7? (It looks like the decimal point shifted one place. Did it really?) 
 
Musing 53.12 James, feeling naughty, wrote the decimal number  3|−4|0 . 5|−7|0| − 1.  
What is a societally acceptable version of this decimal number?  
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MECHANICS PRACTICE 
 
Musing 53.13  

a) The decimal 0.23 equals which of the following? 
 

 a) 23
10

         b) 23
100

         c) 23
1000

         d) 23
10000

 
 

b) The decimal 0.0409 equal which of the following? 
 
a) 409

100
        b) 409

1000
        c) 409

10000
        d) 409

100000
 

 
 
Musing 53.14 Draw 1 ← 10 machine pictures of each of these quantities. 
 

a) 66
100

        b)  6
10

+ 6
100

       c) 1 66
100

           d) 66
50

 
 
 
 
Musing 53.15  
 

a) This picture for a 1 ← 10 machine is equivalent to which of the following numbers? 
 

 
 

a) 31.2               b) 3.12                c) . 312                d) . 0312 
 

b) Can you see that this picture is the decimal 34.32in disguise?  
 

 
 

(This is technically a YES/NO question. It would be nice if the answer were YES.) 
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54. Fractions as Decimals  
 
We saw in chapters 5 and 6 that fractions are numbers that match answers to division problems.  
 
For example, 2

3
 is the answer to 2 ÷ 3, and 1

2
 is the answer to the division problem 1 ÷ 2. 

 
Moreover, as we saw in Chapter 4, we can compute answers to division problems in a 1 ← 10 machine, 
even a division problems like 1 ÷ 2. All we have to do is make use of the boxes to the right of the 
decimal point. The division process is exactly the same.   
 
For instance, to compute 1 ÷ 2 we need to identify groups of two in this picture with just one dot. 
 

 
 
No groups of two can be seen at present, so let’s unexplode. Doing so reveals five groups of two at the 
tenths level. 

 
 

We have that 1
2
 is 0.5 as a decimal. (And as a check, 5

10
 does indeed equal 1

2
.) 

 

Practice 54.1: Write 1
4
 as a decimal by computing 1 ÷ 4. Do you get 0.25? 

 
Practice 54.2: Write 1

5
= 1 ÷ 5 as a decimal. 

 
Practice 54.3: Write 1

10
= 1 ÷ 10 as a decimal. (Why should you get the answer 0.1?) 
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Another example: Let’s write 1
8
 as a decimal. We need to compute 1 ÷ 8 in a 1 ← 10 machine. 

 
We seek groups of eight in the following picture. (I won’t draw dots this time and just write numbers.) 
 
 

 
 
None are to be found right away, so let’s unexplode. 
 
 

 
 
We have one group of 8, leaving two behind. 

 

 
 
Two more unexplosions. 
 

 
  



 
 
 

13 
CHAPTER 7 

 

This gives two more groups of 8 leaving four behind.  
 

 
 
Unexploding again  

 

 
 
reveals five more groups of 8 leaving no remainders.  

 

 
 
We see that, as a decimal, 1

8
 turns out to be 0.125. And as a check we have  

 

0.125 =
125

1000
=

25
200

=
5

40
=

1
8

 

 
Super! 
 

(Did you follow all the steps on this and the previous pages?) 
 
 

Practice 54.4: Write 1
40

= 1 ÷ 40 as a decimal. 
(Can you compute this in a 1 ← 10, writing numbers instead of drawing dots?) 
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Not all fractions lead to simple decimal representations. For example, consider the fraction 1
3
.  

 
To compute it, we seek groups of three in the following picture. 

 

 
  
Let’s unexplode. 

 

 
 
 
We see three groups of 3 leaving one behind.  
 

 
 
 
Unexploding gives another ten dots to examine. 

 

 
 
 
We find another three groups of 3 leaving one behind. 
 

 
 
 
And so on. We are caught in an infinite repeating cycle.  
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This puts us in a philosophically interesting position. As human beings we cannot conduct this, or any, 
activity for an infinite amount of time. But it seems very tempting to write 
 

1
3

= 0.33333333 … 

 
with the ellipsis representing the instruction “keep going with this pattern forever.”  
 
In our minds we can almost imagine what this means. But as a practical human being it is beyond our 
abilities: one cannot actually write down those infinitely many 3s represented by the ellipsis. 
 
 
 
Nonetheless, many people choose not to contemplate what an infinite statement like this means and 
just carry on and say that some decimals are infinitely long and not worry about it.  The fraction 1

3
 is one 

of those fractions whose decimal expansion goes on forever. 
 
 

Practice 54.5: Write 1
9
 as an infinitely long decimal. 
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Here’s a complicated example. Work through it if you are game! Here we convert the fraction 6
7
 to an 

infinitely long decimal.  
 

      

        

      
 
Do you see with this 6 in the final rightmost box that we have returned to the very beginning of the 
problem? This means that we shall simply repeat the work we have done and obtain the same sequence 
“857142” of answers again, and then again, and then again.  
We have  
 

6
7

= 0.857142  857142  857142  857142 … 
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Practice 54.6: Write 2

15
= 2 ÷ 15 as a decimal. Does it too fall into an infinitely repeating 

pattern? 
 
 
Practice 54.7: Write 1

6
= 1 ÷ 6 as a decimal. Does it too fall into an infinitely repeating pattern? 

What about 2
6
? 

 
 
Challenge 54.8: Which of the following fractions give infinitely long decimal expansions? (We’ve 
done some of these already.) 
 

1
2

    
1
3

    
1
4

    
1
5

    
1
6

    
1
7

    
1
8

    
1
9

    
1

10
    

1
11

    
1

12
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MUSINGS 
 
Musing 54.9 We saw that 1

3
= 0.333333. . .. is an infinitely long decimal. 

 
a) What must 2

3
 be as a decimal? 

 
b) Compute 4

3
 as a decimal. Is what you get the same as 0.12 |12 |12 |12 |12 | ... ? 

 
c) Sona says that every fraction of the from 𝑁𝑁

3
 is sure to be an infinitely long decimal. (Here 𝑁𝑁 is 

some number for the numerator.)  Is Sona right? 
 
 
 
Musing 54.10 We have that 1

3
+ 1

6
= 1

2
. (Check this fraction arithmetic.) 

 
If you haven’t already (but surely you have by now!) work out 1

3
= 1 ÷ 3 and 1

6
= 1 ÷ 6 as decimals.  

 
Add your two answers together. Do you get 0.5? 
 
(You don’t actually! This example shows that there is something philosophically deep we need to 
attend to in this non-human play of infinitely long decimal representations.)  
  
 
 
Musing 54.11 

a) Compare the decimal representations of 1
2
 and 1

20
. What do you notice? 

b) Compare the decimal representations of 1
5
 and 1

50
. What do you notice? 

c) Compare the decimal representations of 1
3
 and 1

30
. What do you notice? 
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MECHANICS PRACTICE 
 
Musing 54.12   Performing the division in a 1 ← 10 machine show that 3

5
 is 0.6 as a decimal. 

 
Musing 54.13 Compute 4

7
 as an infinitely long repeating decimal. 

 
Musing 54.14 If you haven’t already, compute 1

11
 as an infinitely long repeating decimal.  

 
 

 
 
 
BONUS (completely optional) MUSING  
(as if anything in this book is compulsory!) 
 
 
Musing 54.15 Here’s a very strange way to divide a number by 9.  
We’ll illustrate it with a specific example. 
 

To divide 312 by 9, write out the partial sums of its digits, computed from left to right 
 

 
 
and then read off the answer: 
 

312 ÷ 9 = 34 𝑅𝑅 6 
 

(And indeed, 312 = 9 × 34 + 6.) 
 
In the same way: 
 

For the number 1221 we get the sums 1 = 𝟏𝟏, 1 + 2 = 𝟑𝟑, 1 + 2 + 2 = 𝟓𝟓  
and 1 + 2 + 2 + 1 = 𝟔𝟔. This bizarre method suggests  

 
1221 ÷ 9 = 135 𝑅𝑅 6 

which turns out to be correct. 
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and  
  

For the number 20,000 we get the sums 2= 𝟐𝟐, 2+0 = 𝟐𝟐, 2+0 + 0 = 𝟐𝟐,  2 + 0 + 0 + 0 = 𝟐𝟐 
and 2+0 + 0 + 0 + 0 = 𝟐𝟐 . This method suggests  

 
20,000 ÷ 9 = 2222 𝑅𝑅 2 

 
which also turns out to be correct. 

 
 
One might have to perform some explosions along the way and deal with extra-large remainders.  
 
For instance, the method suggests that 5623 ÷ 9 = 5|11|13 with a remainder of 16. (Do you see 
this?) With explosions, this gives  

5623 ÷ 9 = 623  𝑅𝑅  16 
 
But a remainder of “16” corresponds to one extra group of 9 and a remainder of 7. So, we really have 
  

5623 ÷ 9 = 624  𝑅𝑅  7 
 
 
 

a) Before reading on, can you explain why this strange method works? 
 
 
One way to explain the puzzle is to write 1

9
 as an infinitely long decimal.  

 

b) If you haven’t done so already, show that 1 0.111111....
9
= .. 

 

 
 
 
If we double this expression, and triple it, and so forth, we get 
 

1
9

= 0.1111. ..     
2
9

= 0.2222. . .      
3
9

= 0.3333. . .     
4
9

= 0.44444. .. 
   

and so on.  In general, 𝑁𝑁
9

= 0.𝑁𝑁|𝑁𝑁|𝑁𝑁|𝑁𝑁|𝑁𝑁… for any given number 𝑁𝑁 for a numerator.  
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To compute 312 ÷ 9 we need to compute 312

9
. This is a decimal with 312 dots in each box to the right 

of the decimal point.   
 
 

 
 
 
We have a lot of explosions to do!  
 
 

c) Perform the explosions, working left to right.  
 
Do you see the numbers 3 and 3 + 1 and 3 + 1 + 2 playing a key role along the way? 
 
Do you see the answer 34.666666⋯appear? 
 

 
d) What is 0.66666⋯ as a fraction?  

 
 

e) Can you see that you have just established that 312 ÷ 9 is 34 with a remainder of 6? 
 
 
Repeat this argument to show that 
 

f) 214 ÷ 9  equals 23 + 7
9
, with the numbers 2, 2 + 1, and 2 + 1 + 4 playing a key role along 

the way. 
g) 432 ÷ 9 equals 47 + 9

9
 (also known as 48), with the numbers 4, 4+3, and 4+3 + 2 playing a 

key role. 
 
 

 
 
  



 
 
 

22 
CHAPTER 7 

 

ANOTHER BONUS! 
 
Let’s attend to an age-old question.  
 

Is 𝟏𝟏.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗…  equal to 𝟏𝟏or is it not? 
 
 

Many people argue that this quantity must equal 1 because of what we observed in the previous 
Bonus Musing. There we saw 
 
 

1
9

= 0.1111. . .     
2
9

= 0.2222. . .      
3
9

= 0.3333. . .     
4
9

= 0.44444. .. 
   

 
It follows that  

9
9

= 0.99999999 … 

 
and we know the value of 9

9
.  It’s one! 

 
Others argue that it cannot be 1. 

 
0.9 = 9

10
 is smaller than 1 

0.99 = 99
100

 is also smaller than 1 

0.999 = 999
1000

 still is smaller than 1 
even 
 

0.9999999999 = 9999999999
10000000000

 is smaller than 1 
 
We humans can only ever write down a finite number of 9s and every time we do so we see a value 
smaller than 1. Surely, with an infinite number of 9s (if we could write them down) we still have a 
value smaller than 1?  
 
The issue is that we are playing a mind game. With that ellipsis, we are never actually writing down 
the number we are talking about!  
 
We humans will only ever be able to experience a finite number of 9s (to give a value smaller than 1), 
but no experience is about the number 0.9999 …. itself.  
 
The jury has to remain “out” on any conclusions about 0.9999 …  via this argument.    
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Most people feel like they can imagine the quantity 0.9999 … and feel like it should have a 
meaningful value.  
 
If you are one of those people, then mathematics is suggesting it has value 1 (look at 9

9
 again).  

 
Some people are more cautious about assuming a mind-game quantity like 0.9999 … really “exists” in 
the first place and will argue that asking for its value is a moot: 0.9999 … doesn’t exist! 
 
Mathematicians take a different approach. They interpret an ellipses as indicating “journey,” not a 
destination.  
 
 
The numbers we humans can write down—0.9 and 0.99 and 0.999 and 0.9999  and 0.99999 and so 
on—are certainly getting closer and closer to the value 1. So, let’s interpret an ellipsis as  
 

the value that the decimals we humans can experience, as indicated by the decimal number,  
seem to approach.   

 
 

For example, 0.3 = 3
10

 and 0.33 = 33
100

 and 0.333 = 333
1000

 and so on, are getting closer and closer to 
the value one third. So, mathematicians are happy to write 
 

0.3333333 … =
1
3

 

 
Mathematicians have checked that this line of thinking is consistent with all our rules of arithmetic, 
and so no surprises and contradictions will result if you play with infinite decimals via this mindset.  
 
Question: What is 3 × 0.333333 …? Do we get an answer consistent with 0.99999 … having value 1?  
 
So, yes, 0.9999 … exists and “has” value 1 if you interpret the infinite decimal as a journey: Where do 
the numbers 0.9, 0.99, 0.999 , 0.9999, and so on, seem to be taking you?  
 
Musing 54.16 Even Exploding Dots shows that 0.9999 … suggests a journey to the number 1. 
 
Here’s a picture of 0.99999 … in a 1 ← 10 machine.  
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Place a dot and an antidot in the first decimal place. This is technically adding nothing to the picture. 
 

 

   
 

 
Perform an explosion. What picture do you get? 
 
Now place a dot and antidot in the second decimal place and perform another explosion. 
 
Do the same for the third decimal place, the fourth one, the fifth one. 
 
What “final” picture do we seem to be approaching if we keep going?  
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55. Finite Decimals 
 
The fractions 3

10
, 47
100

, and 813
10000

 have what are called finite decimal expressions: one only needs a finite 
number of digits to express each of them as a decimal number.     
 

3
10

= 0.3 

 
47

100
= 0.47 

 
813

10,000
= 0.0813 

 
(Do you agree with these representations?) 
 
In general, any fraction with denominator of either 10, 100, 1000, … has a decimal representation that 
stops after a finite number of places to the right of the decimal point.  
 
Actually, any fraction that is equivalent to a fraction with denominator of either 10 or 100 or 1000 or 
10000, and so on, has a finite decimal expression. For instance,  
 
 

7
20

 is equivalent to 7×5
20×5

= 35
100

 and so, as a decimal, is 0.35, 
 
131
500

 is equivalent to 131×2
500×2

= 262
1000

= 0.262, 
 
and 

 
1
2

= 1×5
2×5

= 5
10

= 0.5. 
 

 
 
 

Practice 55.1: Write 3
5
, 21
250

, and 3
125

 each as finite decimals.  
 
Practice 55.2: Write 1

2×2×2×2×2×5×5×5
 as a finite decimal.  
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MUSINGS 
 
Musing 55.3 Do you think the reverse is true? If a number can be written as a decimal with only a 
finite number of non-zero digits to the right of the decimal point, must that number be a fraction with 
denominator 10 or 100 or 1000, and so on?    
 
Musing 55.4 Do you think 0.7 and 0.70000 … represent the same number? 
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56. Decimal Arithmetic  
 
Decimals have two advantages when thinking about doing arithmetic with them.  
 

• Decimals are numbers written as codes from a 1 ← 10 machine and so one can use all the tricks 
and tools of place value to conduct computations. 
 

• Decimals can often be rewritten as fractions and so one can use all the tools of fraction 
arithmetic to help you out too.  

 
 
For example, let’s add, subtract, multiply, and divide the two numbers 0.05 and 0.006. 
 
Addition, via place value, is straightforward. 
 

 
 

 
Practice 56.1: As fractions, 0.05 is 5

100
 and 0.006 is 6

1000
.   Check that 5

100
+ 6

1000
 is indeed 56

1000
. 

  
 
Subtracting these two numbers requires an unexplosion. 
 

 
 

 
Practice 56.2: Check that 5

100
− 6

1000
 is indeed 44

1000
. 

 
 Question: Which is easier for you here: place-value thinking or fraction thinking? 
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Multiplication this way, however, seems awkward. Hmm. 
 

 
 
 
But fraction-thinking makes it fairly straightforward. 
 

0.05 × 0.006 =
5

100
×

6
1000

 

 

                          =
30

100000
 

 

                          =
3

10000
        = 0.0003 

 
 
Practice 56.3:  
a) What is 23 × 37? 
 
b) What is 0.023 as a fraction? What is 0.37 as a fraction?  
 
c) Your work in parts a) and b) show that 0.023 × 0.37 equals 851

100,000
. Do you see how?  

What is 0.023 × 0.37 as a decimal?  
 
d) What is 2.3 × 3.7 and 230 × 0.037? 
 
 

If you want to multiply two decimal numbers by hand, it does seem like a good move to convert  
the numbers into fractions first.  

 
 

One typically doesn’t want to do such work by hand. But every now and then you might find yourself 
doing more tractable problems this way.   

 
Practice 56.4: What is 0.7 × 0.004? (Do you see “28” in your head right away?) 
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Dividing our two decimal numbers directly seems awful. 
 

 
 

But doing it via fraction thinking is fine!  

0.05 ÷ 0.006 =
0.05

0.006
     =

5
100

6
1000

 

 

                                                =
5

100 × 1000
6

1000 × 1000
  

 

                                                      =
50
6

   =
25
3

  = 8
1
3

 

 
 
And we can write the final answer as 8.33333. . .. if we wish. 
 

It’s a good move too to convert decimal numbers into fractions first 
if you want to divide them. 

 
(Of course, the best move of all most of the time is to just use a calculator!) 
 

 
Practice 56.5  
a) What is 0.21 ÷ 0.003? 
b) What is 0.021 ÷ 0.3? 
c) What is 2.1 ÷ 3? 
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Some more practice. 
 
 
 Practice 56.6: Compute 13.276 + 5.94 and 13.276 − 5.94. 
 

 
Practice 56.7:  
a) Agatha says that computing 0.0348 + 0.0057 is essentially a matter of adding 348 and 57. 
What does she mean by this? Is she right? 
 
b) Percy says that computing 0.0852 + 0.037 is essentially a matter of adding 852 and 37. He is 
not right. What is wrong with Percy’s thinking?  

 
 

Practice 56.8:  
a) What is 1

5
× 0.02? 

b) What is 1
5

÷ 0.02? 
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Multiplying and Dividing Decimals by 10. 
 
Musing 53.11 had us multiply 22.37 by 10. We got the answer 223.7, making it appear that the decimal 
point magically shifted place. 
 
Of course, it is really the explosions of dots in a 1 ← 10 machine that give this illusion. 

 
 

 
 

We can also see this if we write out the number 22.37 in full “expanded form” (as schoolbooks call it). 
 
 
 22.37 × 10 = �20 + 2 + 3

10
+ 7

100
� × 10 = 200 + 20 + 3 + 7

10
= 223.7. 

 
 
We can also readily divide 22.37 by ten (that is, multiply it by 1

10
) this way too. 

 
  22.37 ÷ 10 = �20 + 2 + 3

10
+ 7

100
� × 1

10
= 2 + 2

10
+ 3

100
+ 7

1000
= 2.237. 

 
Both answers involve the same digits 2-2-3-7 in order. 
 
 

To multiply or divide decimal numbers by 10 and 100 and 1000 and so on,  
it’s always good write out the decimals as fractions. 
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 Example: Compute 0.9 ÷ 100.  
  

Answer: This is 0.9
100

=
9
10
100

=
9
10×10

100×10
= 9

1000
= 0.009. 

 
 
 
Practice 56.9: Consider the “abstract” decimal 0.𝑎𝑎𝑎𝑎𝑎𝑎. 
 

a) Be clear on why 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 10 equals 0.0𝑎𝑎𝑎𝑎𝑎𝑎. 
b) Be clear on why 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 100 equals 0.00𝑎𝑎𝑎𝑎𝑎𝑎. 
c) Be clear on why 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 0.1 equals 𝑎𝑎. 𝑎𝑎𝑎𝑎. 
d) Compute 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 0.01. 
e) Compute 0.𝑎𝑎𝑎𝑎𝑎𝑎 × 100. 
f) Compute 0.𝑎𝑎𝑎𝑎𝑎𝑎 × 0.01. 
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Multiplying a number by 10 should make it ten times as big. (That’s one of those “duh” comments!)  
 
Dividing a number by 10 (that is, multiplying it by 1

10
) will make it ten times as small. 

 
So … 

 
A number in the 200s multiplied by ten will be in the 2000s. 
 
A number in the 400s divided by ten will be in the 40s. 
 
A number close to 15 multiplied by ten will be close to 150. 
 
A number close to 15 divided by ten will be close to 1.5. 
 
 

Also, we’ve seen in a 1 ← 10 machine that multiplying a decimal number by ten produces an answer 
with the same digits—the digits “shifted” because of explosions. (Actually, we can do unexplosions too 
in order to divide by ten and see a shift of digits again.)    
 
We can see this to by working directly with fractions. For example, 
 

5.67 × 10 = �5 +
6

10
+

7
100

� × 10 

    

                   = 50 + 6 +
7

10
= 56.7 

 
 

5.67 ÷ 10 = �5 +
6

10
+

7
100

� ×
1

10
 

    

                             =
5

10
+

6
100

+
7

1000
= 0.567 

 
 
These observations allow us to deduce the values of decimal numbers multiplied or divided by ten quite 
swiftly.  
 
 

Example: What is 307.231 × 10 × 10? What is 307.231 × 1
10

? 
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Answer: Both problems will produce answers that involve the digits 3-0-7-2-3-1 in order. 
 
We are starting with a number in the 300s.  
 
Multiplying by ten twice should give us a number in the 30,000s. We deduce  
 

307.231 × 10 × 10 = 30,723.1 
 

Dividing by ten once should give an answer the 30s. We deduce 
 

307.231 ×
1

10
= 30.7231 

 
 
 

Example: What is 307.231 × 10 × 10 × 10 × 10 × 10? (That is, what is  307.231 × 100,000?) 
 
Answer: We have a number in the 300s being multiply by ten five times. 
 
This means we’ll have and answer in the 3,000   30,000  300,000  3,000,000  30,000,000s. 
 
The answer must be 30,723,100. 

 
 
 

Practice 56.10: Write down the values of each of these computations. 
 

a) 483.014 × 10 
b) 483.014 × 10 × 10 
c) 483.014 × 10,000 
d) 483.014 × 1

10
 

e) 483.014 × 1
10

× 1
10

 

f) 483.014 × 1
10,000
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Let’s end this Section with something quirky. 
 
 Example: Find 99 fractions that lie between 1

11
 and 1

12
. 

  
 Answer: Here are some that work! 
 

1
11.01

   
1

11.02
   

1
11.03

  …  
1

11.99
 

 
 (Are these in increasing or decreasing in size when reading left to right?) 
 
 If you don’t like how these look, you can always rewrite them as more traditional fractions.  
 For instance,  
 
 

1
11.01

=
1

11 + 1
100

=
1 × 100

(11 + 1
100) × 100

=
100

1100 + 1
=

100
1101

 

 
 

Practice 56.11: Write down 999 fractions that lie between 1
11

 and 1
12

. List them in increasing 
order. 

 
 Practice 56.12: Compute each the following. (Or not! These each look very ugly!)   
 

a) 0.3 × (5.37 − 2.07) + 0.75
2.5

 
 

b) 0.1+(1.01−0.1)
0.11+0.09

 
 

c) (0.002+0.2×2.02)(0.22−0.02)
2.22−0.22

 
 
 
Actually, this final practice problem brings up a good point.  
 
The fraction bar looks like a vinculum, but, historically, it isn’t.  
Nonetheless, we follow the convention of treating it like one, as its own symbol of grouping.  
 

When presented with a complicated expression in the form of a fraction, treat the numerator 
as a quantity to be computed in its own right and treat the denominator as a quantity to be 
computed in its own right.     

 
 
You probably naturally did this if you tried the practice problem.  
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MECHANICS PRACTICE 
 
Practice 56.13 Ask Siri or Alexa or some virtual friend to compute each of the following. 
 

11.9 + 1.7      11.9 − 1.7       11.9 × 1.7        11.9 ÷ 1.7 
 

Feel free to ty them by hand too to see if you get the same answers. (Actually, can you do the first 
two in your head?) 
 
 
Practice 56.14 Compute each of the following.  
(Before you commence, make an estimate of each answer you should get.)  
 

 
 
Practice 56.15 What is a natural way to see that 1.45 − 0.96 is 0.49? 
 
Practice 56.16  
a) What is 0.41 as a percentage? 
b) What is 58% as a decimal? 
c) What is 0.001 as a percentage?  
d) What fraction is 33 1

3
% ? 

e) What fraction is 0.12%? 
 
Practice 56.17 Compute each of the following 
 

a) 1.5 × 1.5 
b) 1.4 × 1.4 
c) 1.45 × 1.45 
d) 1.42 × 1.42 

 
What I am trying to do here is come up with a decimal number with the property that if I square it, it 
will give the answer 2. 
 

e) Do you see that 1.4 is too small a number for this and 1.42 is too big? What about 1.41? Is 
that too big or too small? 

 
f) Care to pin down what the digit in the third decimal place for such a number must be? 
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57. Every Fraction is a Repeating Decimal 
 
We’ve used division in a 1 ← 10 machine to rewrite fractions as decimals.  
 
For example, we saw that 1

4
, computed as 1 ÷ 4, has decimal representation 0.25. 

 

 
 

 
Other fractions have infinitely long decimal expansions. For example, we computed 1

3
 as 1 ÷ 3 and saw 

 
1
3

= 0.33333 … 

 

 
 

And we saw too that 
 

6
7

= 0.857142  857142  857142  ... 
 
with a have a repeating pattern of “857142.”  
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Back in Section 7 we got ahead of ourselves and talked about the use of the vinculum (a horizontal bar) 
throughout mathematics. We mentioned its use in decimals with repeating patterns.   
 
Rather than write out blocks of digits that repeat a few times and slapping on an ellipsis to mean “keep 
this pattern going,” people sometimes put a vinculum over the repeating group with the understanding 
that group of digits is repeating indefinitely.   
 
For example, folk write 
 

6 0.857142
7
=  

and 

 1 0.3
3
=  

 
for the two fractions we just considered. 
 
 
An expression such as 0.38142 means “repeat the group 142 indefinitely after the beginning hiccup of 
38.“ 
 

0.38142 = 0.38  142  142  142  142  . .. 
 
 
All the examples of fractions with infinitely long decimal expansions we’ve seen so far fall into a 
repeating pattern. This is curious.  
 
We can even say this is the case too for our finite decimal examples: they fall into a repeating pattern of 
zeros after an initial start. 
 

1
4

= 0.2500000. . . . = 0.250 

 
1
2

= 0.50000. . . . = 0.50 

 
(After all, one quarter is 2 tenths and 5 hundredths and 0 of every other decimal place-value thereafter, 
and one half is indeed 5 tenths and 0 of every other decimal place-value.) 
 
 
This begs the question:  
 

Does every fraction have a decimal representation that eventually repeats (allowing repeating 
zeros)? 
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The answer to this question, surprisingly, is yes, and our method of division explains why. 
 
 
Let’s go through the division process again, slowly, first with a familiar example. Let’s compute the 
decimal expansion of 1

3
 again in a 1 ← 10 machine.  

 
We think of 1

3
 as the answer to the division problem 1 ÷ 3, and so we need to find groups of three within 

a diagram of one dot. 
 

 
 
We unexplode the single dot to make ten dots in the tenths position. There we find three groups of 
three leaving a remainder of 1 in that box.  

 
 
Now we can unexploded that single dot in the tenths box and write ten dots in the hundredths box. 
There we find three more groups of three, again leaving a single dot behind. 

 
 
And so on. We are caught in a cycle of having the same remainder of one dot from cell to cell, meaning 
that the same pattern repeats. Thus, we conclude1

3
= 0.333. ... The key point is that the same remainder 

of a single dot kept appearing.  
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Let’s compute the decimal expansion of 4
7
 in the 1 ← 10 machine. That is, let’s compute 4 ÷ 7 and be 

sure to take note of the remainders that occur.  
 

 
 
We start by unexploding the four dots to give 40 dots in the tenths cell. There we find 5 groups of seven, 
leaving five dots over. 

 
 
Now unexplode those five dots to make 50 dots in the hundredths position. There we find 7 groups of 
seven, leaving one dot over. 
 

 
 
Unexplode this single dot. This yields 1 group of seven leaving three remaining.  

 
 
Unexplode these three dots. This gives 4 groups of seven with two remaining.  
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Unexplode the two dots. This gives 2 groups of seven with six remaining. 

 
 
Unexplode the six dots. This gives 8 groups of seven with four remaining. 
 

 
 
But this is the predicament we started with: four dots in a box! 
 
So now we are going to repeat the pattern and produce a cycle in the decimal representation. We have  
  

4
7

= 0.571428  571428  571428 … 

 
Stepping back from the specifics of this problem, it is clear now that one must be forced into a repeating 
pattern. In dividing a quantity by seven, there are only seven possible values for a remainder number of 
dots in a cell—0, 1, 2, 3, 4, 5, or 6—and there is no option but to eventually repeat a remainder and so 
enter a cycle.   
 
In the same way, the decimal expansion of 18

37
 must also cycle. In doing the division, there are only thirty-

seven possible remainders for dots in a cell (0, 1, 2, …, 36). As we conduct the division computation, we 
must eventually repeat a remainder and again fall into a cycle.  
 
We have just established a very interesting fact. 
 
 

Every fraction has a decimal representation that falls into a repeating pattern.  
(A pattern of repeating zeros is allowed.) 

 
 

 
Practice 57.1 As a check, conduct the division procedure for the fraction 1

4
.  

Make sure to understand where the cycle of repeated remainders commences. 
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MUSINGS 
 
Musing 57.2 Find the decimal representation of 23

45
. (After a “hiccup,” its decimal representation 

repeats just one digit over and over again. Which digit?)  
 
 
Musing 57.3 The fraction 1

7
 has a repeating decimal representation with a repeating block of six digits. 

 
 1
7

= 0. 142857 
 
Do you think it is possible for a fraction of the form 𝑏𝑏

7
 (with 𝑎𝑎 a counting number) to have a decimal 

representation with a repeating block of digits ten digits long? Eight digits long? Seven digits long? 
 
Musing 57.4 BACKWARDS: Is Every Repeating Decimal a Fraction? 
 
Consider the repeating decimal 0.6363636. ... .  Is this number a fraction? If so, which one?  
 
A popular technique for attending to this issue starts by giving the quantity a name and to repeatedly 
multiply the quantity by ten. Let’s call the decimal Cecile. (Why not?). 
 
We have 
 

            𝐶𝐶 = 0.63636363. . . 
 10 × 𝐶𝐶 = 6.36363636. .. 

100 × 𝐶𝐶 = 63.63636363 … 
 

Let’s stop here since the infinite parts of 𝐶𝐶 and 100 × 𝐶𝐶 align perfectly. 
Let’s subtract them.  

 

 
 

We see that one hundred 𝐶𝐶s take away one 𝐶𝐶, that’s ninety nine 𝐶𝐶s, must equal 63. 
 

99 × 𝐶𝐶 = 63 
 
Ahh! 𝐶𝐶 must be the fraction 63

99
= 9×7

9×11
= 7

11
. 
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a) Use this technique to show that 0.111111 …. is the fraction 1

9
. 

 
b) Show that 0.213213213213213 …  is the fraction 213

999
  

 
c) What fraction is 0.2111111 … ?  
(Keep multiplying this number by 10 until you have two decimal parts that align.)  
 
d) What fraction is 2.8213213213213213 …? 
 
This technique shows that if a decimal number (eventually) has a repeating pattern, then we can keep 
multiplying that number by ten and until we find two multiples whose decimal parts align perfectly.  
Subtraction then allows us to identify that decimal number as a fraction.   
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58. A Decimal that Does Not Repeat is not a Fraction 
 

We established in the previous section  
 

Every fraction has a decimal representation that falls into a repeating pattern  
(perhaps a repeating pattern of zeros). 
 

 
People don’t usually bother writing out a repeating pattern of zeros: writing 1

2
= 0.5 , for instance, 

rather than  1
2

= 0.50000 …  or 1
2

= 0.50. 
 
People call decimals that have repeating zeros finite decimals because they can be expressed with only 
a finite number of digits.  
 
For example, 276 1

2
 and 0.000000000000000000000000000000001 are finite decimals. 

 
 

Practice 58.1 Do you think the number 3 could be called a finite decimal? 
 
 
This now opens up a curious idea. 
 
 

A quantity given by a decimal expansion that does not repeat cannot be a fraction. 
 
 
Pause! Do you get the logic here?  
 
 

Question: Consider the statement: “Every crow is a black bird.” 
Does it logically follow that if a bird is not black, it is not a crow? (Are there albino crows?) 
 
If the statement “Every Australian is cheery” is true, then what can you say about a non-cheery 
person you meet? 
 
If “Every fraction has a repeating decimal expansion” is true (and it is!), what can you say about 
a number that has a decimal expansion that never repeats? 
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Consider this decimal number 
 

0.1011001110001111000011111000000 … 
 
Even though we see a pattern to its decimal expansion (which allows us to figure out any particular 
decimal digit we want just by writing out the pattern far enough), it is not a repeating pattern.  
 
This means that this number cannot be a fraction! 
 

 
 Question: Whoa! Pause again! Take this in. 

 
The quantity 0.10110011100011110000... is a bit bigger than 0.1, which is 1

10
,  and so is just to 

the right of one tenth on the number line. It’s a number!  
 
Yet it’s a number that cannot be a fraction: it doesn’t have a repeating decimal representation. 
 
Do you find this freaky? 

 
 
 
We can invent all sorts of numbers that can’t be fractions. 
 
For example, 
 

0.102030405060708090100110120130140150 … 
and 

0.3030030003000030000030000003 … 
 
are numbers that are not fractions.  
 
(Do you see a pattern in each of these examples? Do you see that neither is a repeating pattern?) 
 
 
Recall that people call numbers that are either positive fractions or negative fractions rational numbers. 
Any number that cannot be a fraction, like the ones we are creating now, are called irrational numbers.   
 
Irrational numbers can be positive and be negative. For example, −0.10110011100011110000 … is a 
negative irrational number.  
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MUSINGS 
 
Musing 58.2 Write down two infinitely long decimal expansions that you personally know cannot be 
rational numbers. 
 
Musing 58.3 Write down a number slightly larger than 1

3
 that is not a fraction.  

 
Musing 58.4 Could a number slightly larger than 1

3
 that is not a fraction and number slightly smaller 

than 1
3
 that is also not a fraction add to a number that is a fraction? 
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59. VERY OPTIONAL ASIDE: A Historically Famous Example a Number 
that is not a Fraction 
 
 
The Pythagoreans of some 2500 years ago believed that all that is good and harmonious in the world 
can be expressed mathematically via a counting number or via a comparison of two counting numbers. 
 
For example, simultaneously plucking two identical strings under the same tension, but with one sting 
twice the length of the other produces two notes that sound harmonious to the ear. (They make the 
musical interval of one octave.) Two identical strings, one 3 units long and the other 2 units long plucked 
simultaneously produce a pleasing perfect fifth, and one 5 units long the other 4 units long a pleasing 
major third, and so on. 
 
Mathematics was central to the worldview of the Pythagoreans. They sought to describe the universe in 
terms of number (counting numbers) and geometry to such a degree that many people today regard 
their academic pursuits as tied to a religious cult.  
 
A fundamental shape in geometry is a square. Surely, the two fundamental lengths in a square—the 
length of any one of its sides and the length of its diagonal—are “in harmony”? That is, if you choose the 
right basic unit of length, surely you can say the diagonal of the square is 𝑎𝑎 units long while its sides are  
𝑎𝑎 units long with 𝑎𝑎 and 𝑎𝑎 both counting numbers?  

 

 
 

The Pythagoreans were utterly shocked to eventually learn that this is not so!  
 
Their worldview was truly shattered. 
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There are a number of ways to show that there cannot be two counting numbers that describe the two 
fundamental lengths in a square.  
 
My personal favorite approach is a physical one—cutting out a square in paper, folding it, and thinking 
about what the folding means. 
 
I did this as an activity and took photos of my work. I started with paper square 70 centimeters in side 
length, which I then cut diagonally in half. (Two figurines, a pig and a penguin, assisted me.) 
 
What’s lovely about this choice of side length is that is diagonal is close, very close, to being 99 
centimeters long, so close that my human eye cannot tell that it is not.   

 
 

 
 

 
Our goal is to show that believing the diagonal has length a counting number too, such as 99, just 
cannot be so.  
 
We need to show that something is terribly wrong with this picture.  
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Comment: As we proceed, we will need to one fact from geometry class, namely:  
 

Any triangle that comes from cutting a square in half diagonally has a 90-degree angle and a 45-
degree angle. And, in reverse, any triangle that has a 90-degree angle and a 45-degree angle is 
half a square. 
 

 
I hope this at least feels intuitively right to you. 
 
 
Okay, back to our triangle, which is half a square with sides allegedly of lengths 70, and 70, and 99 
centimeters. 
 
Fold the bottom edge of the triangle up to the hypotenuse of the triangle and draw in the lines to show 
the edges we created when doing that.  
 
Notice two things:  
 

• The two lengths marked with the double dashes in the third photo below are the same length. 
(We see that from the folding in the middle photograph.) 
 

• We can identify an edge of length 29 centimeters because we folded an edge of length 70 
centimeters up against an edge of length of 99 centimeters. (Again, look at the middle 
photograph.)  
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Actually, there is a third important thing to notice. 
 
We see in our third photograph a little triangle with top angle 45 degrees (from the original big triangle 
that is half a square) and with a 90-degree angle (from folding a 90-degree angle up to the hypotenuse 
of the big triangle.)  
 
This little triangle at the top must be half of its own square. 

 
One side of the smaller square is 29 centimeters long. So, the other side of the square is 29 centimeters 
long as well. 
 
And since the two lengths marked with a double dash are the same, we have three lengths of 29 
centimeters in our picture! 

 
 
And we can mark a length of 41 centimeters as well: the left edge of the big triangle is 70 centimeters 
long, and 70 − 29 = 41. 
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Everything we just did came from combining the two counting numbers 99 and 70 we started with via 
subtraction to produce new counting numbers.  

 
29 99 70
41 70 29

= −
= −

 

And these new, smaller counting numbers are the side-lengths of another triangle that is half a square. 
And we see from the paper, this new triangle is much smaller than the original triangle.  
 

 

 
Your Turn:  

Cut out a 7 inch by 7 inch square from a piece of paper.  
Cut your square in half diagonally to make a triangle.  
 
With a ruler, verfiy that the length of the long edge of your triangle is very close to 10 inches. 
 
Using the numbers 7, 7, and 10, follow the folding and thinking outlined above to create a smaller 
traingle that must also be half a square. If we believe those counting numbers are accurate what are the 
side lengths of your smaller half square? (You should be reasoning that they are 3, 3, and 4 inches long.) 
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What we are doing is worrisome. 
 
We are seeing that if you have a triangle that is half a square with side lengths each a counting number, 
then you can fold that triangle to create a smaller half square also counting numbers as side lengths.  
 
And each new half-square triangle we create is demonstrably smaller than the triangle we started with.  
 

Practice 59.1 Right now, in my photos, we allegedly have a half square with side lengths 29, 29, 
and 41 centimeters—all counting numbers.  
 
If we apply the folding procedure on this triangle, what are the (alleged) dimensions of the even 
smaller half square we create? 
 

If we do this folding process over and over and over and over and over again will eventually obtain a 
half-square smaller than an atom, all the while giving us counting number side lengths. The side-lengths 
can’t ever be zero—we do have a triangle of some size—but no triangle smaller than an atom can have 
counting number side lengths!  
 
Believing that we had counting number side lengths to begin with puts us into a logical pickle.  
Something is indeed terribly wrong!   
 
The only way out of this pickle is to conclude that believing we had nothing but counting numbers to 
begin with is wrong. (Even though we assumed we had the counting numbers 70, 70, and 99, any set of 
beginning counting numbers will lead to this pickle. We’d again create a triangle smaller than an atom 
but still with counting number side lengths, allegedly!)    
 

There are no counting numbers 𝑎𝑎 and 𝑎𝑎 that describe the lengths in this picture. 

 

The side length of a square and the diagonal length of a square are in discord! 
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Let’s rephrase what we just concluded in our modern setting.  
 
Consider a square with side length 1 unit. Then the diagonal has some length. Call it 𝑑𝑑 units. 
 

 

Now, 𝑑𝑑 is a number. It has some value.  

 
 
Question: Getting ahead of ourselves again …  
Do you remember the Pythagorean Theorem from geometry class?  
 
We have a right triangle in our picture, and we see by the Pythagorean Theorem that  

12 + 12 = 𝑑𝑑2 

This tells us that 𝑑𝑑2 = 2. 
 
Thus, 𝑑𝑑 is a number that multiplies by itself to give the value 2.  
People call that the “square root” of 2. 
 

𝑑𝑑 = √2 
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We have essentially just demonstrated that the number 𝑑𝑑, whatever it is, cannot be a fraction. 
 
For if  𝑑𝑑 = 𝑎𝑎

𝑏𝑏
 for two counting numbers 𝑎𝑎 and 𝑎𝑎,  

 

then we can scale our picture up by a factor 𝑎𝑎 (have all the lengths grow to 𝑎𝑎 times as big: 𝑎𝑎 × 1 = 𝑎𝑎 
and 𝑎𝑎 × 𝑎𝑎

𝑏𝑏
= 𝑎𝑎) and obtain a half square with counting numbers lengths.  

 

 
And we just proved that that cannot be! 
 
The number 𝑑𝑑, the length of the diagonal of a square with side length 1 unit, whatever that value is, 
must be an irrational number. 
 
Irrational numbers exist in the real world!  
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Side Comment: Schoolbooks want students to “know” that two famous numbers in mathematics are 
irrational. These numbers are:  

• √2, the length of the diagonal of a square with side length one unit  
• 𝜋𝜋 (pi) the number that arises if you take the circumference of a circle and divide it by its width. 

 
 

We just went to an awful lot of effort to demonstrate that √2 is an irrational number. It is not at all 
“obvious” that √2 is not a fraction. 
 
Matters are more challenging for the number 𝜋𝜋.  
 
In fact, scholars wondered for millennia whether or not 𝜋𝜋 is a fraction. They calculated its decimal 
expansion to many hundreds of counts of digits and saw no pattern or structure to those digits. They 
found fractions that approximated the value of 𝜋𝜋 very closely, and developed methods for creating 
more fractions that would approximate it as closely as one pleases. But whether or not 𝜋𝜋 itself is a 
fraction (with some gigantically large numerator and some gigantically large denominator) remained a 
frustrating mystery for centuries and centuries.   
 
It wasn’t until around the year 1761 that Swiss mathematician Johann Lambert was finally able to 
establish, once and for all, that 𝜋𝜋 is an irrational number. It is not a fraction. 
 
The proof of this is very hard, and well beyond the school curriculum. It is extremely far from “obvious” 
that 𝜋𝜋 is not a fraction. 
 
So, when school curriculums say “Students should know that √2 and 𝜋𝜋 are examples of irrational 
number” they really mean, “Students should be told that √2 and 𝜋𝜋 are examples of irrational number.” 
 
 

Question: Did your schoolbooks ever explain why √2 is an irrational number?   
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60. The Powers of Ten  
 
We saw that dots in a 1 ← 10 machine are worth 1 in the rightmost box and then have values 10 , 100, 
1000, and so on, as we move through the places to the left. These values grow by a factor of ten from 
one box to the next. 

 
We have 
 

1 = 1 
10 = 1 × 10 
100 = 1 × 10 × 10 
1000 = 1 × 10 × 10 × 10 
10000 = 1 × 10 × 10 × 10 × 10 

 
and so on. 
 
Rather than repeatedly write out products of ten, the mathematics community has settled on using 
superscripts to denote the result of repeatedly multiplying the number 1 by a fixed value.  
 
 

If 𝑛𝑛 is a counting number, then for any number 𝑎𝑎 the notation 𝑎𝑎𝑛𝑛 means 
 

1 × 𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 × 𝑎𝑎������������
𝑛𝑛 of these

 
 
We read 𝑎𝑎𝑛𝑛 as 𝑎𝑎 raised to the 𝒏𝒏th power.  
 

 
For example, two raised to the third power is the number 1 doubled three times, 

  
23 = 1 × 2 × 2 × 2 = 8 

 
and ten raised to the sixth power is the number 1 increased by a factor of ten, six times  
 

106 = 1 × 10 × 10 × 10 × 10 × 10 × 10 = 1,000,000 
 
This gives a million. 
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We saw this notation way back in Section 10 when we were chopping up squares and cubes.  
 
We had 

52 = 5 × 5 
 
saying “five squared,” and 
 

53 = 5 × 5 × 5 
 
saying “five cubed.” (And we didn’t talk about 54 and 55, and so on because we don’t have everyday 
language for ideas that go beyond the third dimension!) 
 
 

Question: Do we have a discrepancy here?  
 
Shouldn’t we have 52 = 1 × 5 × 5 and 53 = 1 × 5 × 5 × 5? 

 
 Does it matter if we ignore the 1 that is meant to be up front? 
 
 
You might see in some schoolbook authors defining 𝑎𝑎𝑛𝑛 as 
 

𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 × 𝑎𝑎������������
𝑛𝑛 of these

 
 

without a 1 up front. This makes no difference if 𝑛𝑛 is a counting number different from zero. 
 
 
Practice 60.1  

a) Does defining 𝑎𝑎𝑛𝑛 as 1 × 𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 × 𝑎𝑎������������
𝑛𝑛 of these

 make sense if 𝑛𝑛 happens to be zero? (If so, what 
is the value of 𝑎𝑎0?) 
 

a) Does defining 𝑎𝑎𝑛𝑛 as 𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 × 𝑎𝑎������������
𝑛𝑛 of these

 make sense if 𝑛𝑛 happens to be zero? (If so, what is the 
value of 𝑎𝑎0?) 
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Thinking of 10𝑛𝑛  as  

1 × 10 × 10 × ⋯× 10 × 10����������������
𝑛𝑛 of these

 
 
 
it is clear, for us, that 100 is 1.  
 
And this is nice as we can now say that all the place values in our 1 ← 10 machine are powers of ten. 
 

 
 
 
 
 
But what about the boxes to the right, the decimal places?  
 
It seems irresistible then to keep the powers-of-ten pattern going: from 103, 102, 101, and 100 down 
into 10−1, 10−2, 10−3, and so on.  
 
Can we say this?  
 

  
 

 
 
  



 
 
 

59 
CHAPTER 7 

 

Mathematicians have settled on a second piece of convenient notation. 
 
 

If 𝑛𝑛 is a counting number, then for any number 𝑎𝑎 (not zero) the notation 𝑎𝑎−𝑛𝑛 means 
 

1 ×
1
𝑎𝑎

×
1
𝑎𝑎

× ⋯×
1
𝑎𝑎

×
1
𝑎𝑎

������������
𝑛𝑛 of these

 

 
We read 𝑎𝑎−𝑛𝑛 as 𝑎𝑎 raised to the negative 𝒏𝒏th power. 

 
 
This notation is motivated by the following idea:  
 
Since 101 means (for us) “multiply the number 1 by ten,” it feels like 10−1 should be the opposite of 
this, which would be: “divide the number 1 by ten.” And dividing by ten, as we know, is the same as 
multiply by 1

10
. 

10−1 = 1 ×
1

10
=

1
10

 

 
And since 102 means “multiply the number 1 by ten, twice,” it feels like 10−2 should be the opposite of 
this, “divide the number 1 by ten, twice.” That would be multiplying the number 1 by 1

10
, twice.  

 

10−2 = 1 ×
1

10
×

1
10

=
1

100
 

 
And so on.  
 
This notation is convenient as we can now represent each place value in our 1 ← 10 machine using this 
notation.  
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Comment: We are not doing any mathematics with these powers 10𝑛𝑛  and 10−𝑛𝑛. Both are just 
shorthand for writing out repeated multiplications 
 

10𝑛𝑛 = 1 × 10 × 10 × ⋯× 10 × 10����������������
𝑛𝑛 of these

 
 
 

10−𝑛𝑛 = 1 ×
1

10
×

1
10

× ⋯×
1

10
×

1
10

����������������
𝑛𝑛 of these

 

 
 
But there is a slew of mathematics one can explore with such repeated products, and that mathematics 
agrees with the notation we happen to be using here. (We’ll talk about the mathematics of “powers,” 
for sure, in our next volume of chapters.)  
 
For us now, this notation will just be notation, nothing more.  
 
And this notation will help us write really really big numbers and really really small numbers in a 1 ← 10 
machine with ease. 
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MUSINGS 
 
Musing 60.2 Recall that nine-year-old Milton Sirotta in 1938 coined the term googol for the number 1 
with one-hundred zeros after it (10000⋯00) and the term googolplex for the number 1 followed by 
a googol zeros. 
 

a) Write down a googol as a power of ten.  
b) Write down a googolplex as a power of ten. 

 
Musing 60.3  
Draw a 1 ← 10 machine picture of each of these quantities. What number do they each represent? 
 

a) 3 × 105 + 2 × 104 + 7 × 10 + 5 × 10−2 
 

b) 17 × 103 + 82 × 102 + 90 × 10 + 76 × 1 + 23 × 10−1 + 48 × 10−2 
 
Musing 60.4 We have:  

 
103 = 1,000 is called a thousand. 
106 = 1,000,000 is called a million (it’s a thousand thousands). 
109 = 1,000,000,000 is called a billion (it’s a thousand millions). 
 

a) What number is a trillion? A quadrillion? 
 
b) In the past, a million million was called billion. What number is that as a power of ten? 
 
In the past, a million billion was called trillion. What number is that as a power of ten?  
 
In the past, a million trillion was called quadillion. What number is that as a power of ten?  
 
c) The prefixes “bi,” “tri,” and “quad” mean two, three, and four, respectively. 
Do these prefixes make sense for names of the numbers billion, trillion, and quadrillion?   
 
d) What is a milliard ? 

 
Do you care to look up the history of the names for these big numbers?  
When did their meaning change? What instigated the change?  
 
Musing 60.5 How many bytes is a gigabyte? Express your answer as a power of ten. 
 
Musing 60.6 Are you a billion seconds old? 
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MECHANICS PRACTICE 
 
Practice 60.7 What number do each of these quantities represent? 
 

a) 22      b) 2−2    c) 34       d) 1506     e) 1−2      f) 020 
 
 
Practice 60.8  

a) What is 0.00001 as a power of ten? 
b) What is 64 has a power of four? 
c) What is 1

8
 as a power of two? 

d) If 𝑎𝑎3 = 8
125

, what is 𝑎𝑎?  
 
Practice 60.9 
a) Can you see that 107 × 108 has to be 1015? 
b) What is 103 × 105 × 106 as a power of ten? 
c) What is 105 × 10−2 as a power of ten? 
d) What is 10−3 × 10−4 as a power of ten? 
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61. Scientific Notation  
 
As we noted in Section 56, 
 

• Multiplying a number by 10 gives an answer ten times as big. 
• Dividing a number by 10 (that is, multiplying it by 1

10
) gives an answer ten times as small. 

 
And multiplying a number written in base ten either by 10 or 1

10
 gives an answer with the same digits as 

the original number, in the same order. (Well, you might introduce some zeros.) 
 
For example, 
    
 

5.67 × 10 × 10 × 10 = �5 +
6

10
+

7
100

� × 10 × 10 × 10 = 5000 + 600 + 70 = 5670 
 
 

5.67 ×
1

10
×

1
10

×
1

10
= �5 +

6
10

+
7

100
� ×

1
10

×
1

10
×

1
10

=
5

1000
+

6
10000

+
7

100000
= 0.00567 

 
    
 
These observations allow us to deduce the values of decimal numbers multiplied or divided by ten quite 
swiftly.  
 
 

Example: What is 7.03 × 106? What is 7.03 × 10−2? 
 

Answer: Both problems will produce answers that involve the digits 7-0-3. 
And we are starting with a number that is close to 7.  
 
Now, 106 is a million, so  7.03 × 106 must be a value close to seven million.  
We must have 
 

7.03 × 106 = 7,030,000 
 
 

Also, 10−2  is one hundredth, so 7.03 × 10−2 must be a value close to seven hundredths.  
We must have 
 

7.03 × 10−2 = 0.00703 
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Example: What is 307.231 × 105? 
 
Answer: We have a number in the 300s being multiply by ten five times. (Do you see that?)  
 
This means we’ll have and answer in the 3,000   30,000  300,000  3,000,000  30,000,000s. 
 
The answer must be 30,723,100. 

 
 
(Did this feel like déjà vu?)  
 
 

Practice 61.1: Write down the values of each of these computations. 
 

a) 52.004 × 10 
b) 52.004 × 10 × 10 
c) 52.004 × 106 
d) 52.004 × 1

10
 

e) 52.004 × 1
10

× 1
10

 
f) 52.004 × 10−4 
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We humans are not at all good at comprehending very very big numbers nor very very small numbers.  
 
For example, 
 

Do you have a sense for how much time has passes in 78840000 seconds?  
 
Do you have a feel for the length 0.0000000892306 kilometers? 

 
 
Even just saying these numbers is hard!  
 
The first number has a lot of digits. Folks in the western world often use commas to separate long 
numbers into sets of three digits to help us think of the numbers in terms of thousands, millions, billions, 
and so on. Our count of seconds reads 
 

78,840,000 
 
We see immediately that we are talking about millions of seconds. We can even say that we’re talking 
about roughly 79 million second, or maybe saying 80 million seconds is good enough.  
 
Saying out loud just the first one or two digits of a large number—as millions or thousands and such—
makes the number feel more manageable. (Though I still don’t have a sense of how long a time about 
eighty million seconds actually is!)  
 
 

Practice 61.2:  In India the noun lakh is used for one-hundred thousand.  
About how many lakh is the number 78840000? 
 
 
Practice 61.3:  Show that 78840000 seconds is about 2.5 years. 

 
 
 
A number with a large number of decimal places is equally hard for us to wrap our brains around.  
 
Rounding to just one or two digits usually makes matters feel better:  
 

0.0000000892306 kilometers is approximately 0.00000009 kilometers.  
 

And we can get a feel for this number if we change the units.  
 
With a thousand meters in a kilometer, multiplying by a thousand gives the count of meters in this 
measurement.  
 

0.00000009 × 1000 = 0.00000009 × 10 × 10 × 10 = 0.00009 meters 
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Since there are 100 centimeters in a meter, multiplying this value by one hundred gives the count of 
centimeters in this length. 
 

0.00009 × 100 = 0.00009 × 10 × 10 = 0.009 centimeters 
 
There are 10 millimeters in a centimeter, so this is  
 
 0.009 × 10 = 0.09 millimeters.  
 
And this looks and feels more manageable. (And just so you have it, 0.09 mm is a typical width of a 
human hair.)  
 
 
 
 
Adjusting very big numbers and very small numbers by powers of ten is a common practice to get a 
manageable sense of the number. For instance, we see that 
 
 

 78840000 = 7884 × 10,000 
                           = 788.4 × 10 × 10,000 
                               = 78.84 × 10 × 10 × 10,000 
                                   = 7.884 × 10 × 10 × 10 × 10,000 

                                                    = 7.884 × 10 × 10 × 10 × 10 × 10 × 10 × 10 
= 7.884 × 107 

 
 
and 7.884 × 107 is about 7.9 × 107 or 8 × 107, depending on how much you want to round.  
 
 
Also,  
 

0.0000000892306 = 8.92306 ×
1

10
×

1
10

×
1

10
×

1
10

×
1

10
×

1
10

×
1

10
×

1
10

= 8.92306 × 10−8 
 

 
which we might round to 8.9 × 10−8or 9 × 10−8. 
 
 
Writing numbers like 7.9 × 107 and 9 × 10−8 makes measurements look much more tractable.  
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A number rewritten to be a single non-zero digit followed by some decimal places and then multiplied 
by a power of ten, 

𝑎𝑎. 𝑎𝑎𝑎𝑎𝑑𝑑. ..  × 10𝑚𝑚 
 

is said to be written in scientific notation.  
 
 
Often humans find it convenient to round a number written in scientific notation one with either zero, 
or just one or two digits after the decimal point. 
 
Also, people tend to have certain “powers of ten landmarks” in their heads:  
 

103 corresponds to thousands  
106 corresponds to millions 
109 corresponds to billions  

 
and  

 
10−2 corresponds to hundredths (a hundredth of a meter is a centimeter) 
10−3 corresponds to thousandths (a thousandth of a kilometer is a meter) 

 
and so on.  
 
This helps with developing an intuitive feel for the number.  
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MECHANICS PRACTICE 
 
Practice 61.4  

a) What is the approximate value of the number 8.02 × 106 in words? 
b) What is the approximate value of the number 7.983 × 103 in words? 
c) Approximate 2.01 × 10−2 as a fraction. 

 
 
Practice 61.5 
The average distance to the Moon is 384400 km. Write this number in scientific notation. 
 
Practice 61.6   
a) Write each of these numbers in scientific notation. 
 

6539    750000000000      0.0004        212.872 
 

b) Write each of the following as ordinary decimal numbers. 
 

7.27 × 102    7.27 × 10−2    7.27 × 105    7.27 × 10−5    
 

Practice 61.7 Write the answer to each of these computations in scientific notation.  
 

a) 4.4 × 106   +   2.2 × 106 
b) 4.4 × 106   +   2.2 × 107 
c) 3 × (2.2 × 106) 
d) 5 × (2.2 × 106) 
e) (2 × 1018) × (5.5 × 103)  

 
(Doing arithmetic with numbers presented in scientific notation can be annoying.  
How did you handle part b)?) 
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62. Rounding  
 
The decimal number 23.014, we all would agree, is close to the whole number 23 on the number line. 

 
 

 
 
 

So too are the decimal numbers 23.09 and 23.1 and 23.26. 
 
 

Practice 62.1 What about 23.4789? Which whole number is it closest to on the number line?  
 
 

But 23.89 is closer to 24 on the number line than it is to 23. 
 

 

 
 
The number 23.5, on the other hand, is equally distant from the whole numbers 23 and 24. 
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We’ve learned in school that to round a decimal number composed of a whole number and some 
decimal digits. We look for the whole number (without any decimal places) that is closest to it on the 
number line. 
 
For example,  
 

The decimal number 23.3038 rounds (down) to the whole number 23. 
The decimal number 23.61 rounds (up) to the whole number 24. 
 

A lovely visual for this is to imagine a number line with a kink in it. Place a ball at the location of the 
decimal number in question and see to which whole number the ball rolls!  

 
 

 
 

This leads to the schoolbook rule: 
 

To round decimal number to a whole number … 
 
Look at the first decimal place digit.  
 
If that digit is a 0, 1, 2, 3, or 4, then the ball will roll to the left. You will thus “round down” to a 
whole number.   
 
If, on the other hand, that digit is a 5, 6, 7, 8, or 9, then the ball will roll to the right. You will 
thus “round up” to a whole number.  
 

The only ambiguous number in our specific example is 23.5.  A ball sitting at this position on the number 
line is directly on the apex of the kink – and it could roll either direction! 
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Just to make the rounding rule consistent (“round up” if the first decimal digit is 5, 6, 7, 8, or 9), the 
world has decided to have the ball roll to right in this ambiguous case.  
 
Convention: 𝟐𝟐𝟑𝟑.𝟓𝟓 rounds (up) to 𝟐𝟐𝟐𝟐  
 
 
 

Practice 62.2 Which of these decimal numbers round to 8045?  
 

8045.3909725555 
 

8045.7097 
 

8044.49999 
 

8045.50001 
 
8044.60986654 
 
8045.060986654 

 
8044.5 

 
8045.5 
 
8045.0 
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Rounding to hundreds, thousands, tenths, and more 
 
Let’s start with an example.  
 

Example: The average distance to the Moon is 384400 kilometers. 
Round that number to the nearest thousand kilometers. 
 

 
Let’s try to make sense of what is being asked of us. 
 
For starters, we apparently should be thinking in terms of “thousands of kilometers.”  
So, let’s try rewriting the figure given in terms of thousands. (Recall: A thousand can be written as 103.) 
 
We have 
 

384400 = 384.4 × 10 × 10 × 10 = 384.4 × 103 
 

So, the distance to the Moon is 384.4 thousands of kilometers. 
 
We’re asked to round this number. Well, 384.4 rounds to 384 and so our answer must be: 384 
thousands of kilometers. And this measurement is 
 

384 × 103 = 384,000 
 

kilometers. 
 

Example: Round the measurement of the distance to the Moon to the nearest hundred 
thousand kilometers. 
 
Answer: No worries!  
 
One hundred thousand is 105 and so let’s work with  

 
384400 = 3.844 × 105 

  
So, we have 3.844 hundreds of thousands of kilometers. 
 
Rounding 3.844 gives 4.  

 
 And so, the distance to the Moon rounded to the nearest hundred thousand kilometers is  
 

4 × 105 = 400,000 
kilometers. 
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Another example.  
 
 

Example: Round 0.5670764 to the nearest hundredth. 
 
Answer: A hundredth is 10−2 so let’s rewrite this number to make hundredths explicit.  
We have 
 

0.5670764 = 56.70764 ×
1

10
×

1
10

= 56.70764 × 10−2 

  
Okay. We have 56.70764 hundredths, which rounds to 57 of them. 
 
Our appropriately rounded number is  
 

57 × 10−2 = 0.57 
 

 
 

We’ve got a procedure here! 
 

If asked to round a measurement the nearest hundred or million or thousandth … 

Rewrite the given figure in terms of a decimal number multiplied by the appropriate power of 
ten. (This tells you how many hundreds or millions or thousandths you actually have.) 
 
Round that decimal number. 
 
Work out the value of that rounded value times the power of ten you have.  

 

Done! 
 

Practice 62.3 Round 24,506.089 to  
 
a) the nearest whole number. 
b) the nearest hundred 
c) the nearest ten thousand 
d) the nearest hundredth 
e) the nearest tenth 
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Some schoolbooks students use the following technique for rounding.  
 

To round the number in this question, say, to the nearest thousand, underline all the place values 
for thousands and up and then round according to the digit to the right of them. 

24,506.089 

The digit to the right is a five, so we round up and get 25,000 as our rounded value.  
 

Here are the answers to Practice 62.3 in turn: 
 

24,506.089 →  24,506 

24,506.089 →  24,500 

24,506.089 →  20,000 

24,506.089 →  24,506.09 

24,506.089 →  24,506.1 

 
 
Do you see that this is the same technique we’ve been following without mention of scientific notation? 
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MUSINGS 
 
Musing 62.4 Write down a number smaller than 27,000 that, when rounded to the nearest thousand, 
rounds to 27,000.  
 
Musing 62.5 What is the largest whole number which, when rounded to the nearest hundred, gives 
50,000?  
 
Musing 62.6  
a) Which number on the number line is equally distant from 5,700 and from 5,800. 
 
b) A number 𝑁𝑁 between 5,700 and 5,800 on the number line lies to the right of the number you gave 
in part a). What is 𝑁𝑁 rounded to the nearest hundred? How do you know?   
 
Musing 62.7 What, do you think, is −35,483 rounded to the nearest hundred?  
 

 
 

MECHANICS PRACTICE 
 
Musing 62.8 What is the average distance to Moon rounded to the nearest tens of kilometers? 
 
Musing 62.9 Round 8,383,838.3838 to 
 

a) the nearest million 
b) the nearest thousand 
c) the nearest hundredth 
d) the nearest thousandth 
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63. Significant Figures 
 
One meter is divided into one hundred centimeters.  
Each centimeter is divided into ten millimeters (and so a full meter is divided into one thousand 
millimeters).  
 

Question: Do the prefixes centi- and milli- make sense in this context? 
 

If I gave you a length of string to measure with a meter stick just marked with centimeters, you would 
probably round the length you measure to the nearest centimeter. 
 

“The string is about 78 centimeters long” you might say. 
 

The true length of the string might be a little less than 78 centimeters, or a little more, but it will be a 
value within a centimeter range of 78 centimeters.  
 
 
If I then asked you to repeat the task, but this time using a meter stick with each centimeter length on it 
divided into millimeters, you would then likely give me an answer rounded to the nearest millimeter 
(tenth of a centimeter).  
 

“The string is about 78.2 centimeters long” you might say this time. 
 
 
 
In science, the level of precision marked on an instrument tends to determine the level of precision to 
which we make measurements.  
 
But this idea can lead to a mathematical curiosity. 
 
For example, suppose a botanist measured the length of a reed stalk and wrote in her paper that it was 
0.190 meters tall.  
 
What is she telling us?  
 
By giving us the values of three digits after the decimal point, she is saying that she measured the length 
as 1 tenth of a meter and 9 hundredths of a meter and 0 thousandths of a meter, thereby informing the 
readers of her paper that her measuring tool went to the thousandths (millimeters, in this case).  
 
Her measurement is thus a number rounded to the nearest millimeter. So, the true height of the stalk is 
close to 19.0 centimeters with no more than a millimeter of inaccuracy.  
 
 
Now, of course, mathematically the number 0.190 is no different than the number 0.19.  
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If the botanist decided to write in her paper that her measurement was 0.19 meters (mathematically 
the same number), then readers will presume something else, that she measured the length of the stalk 
only to the nearest hundredth of a meter (that is to the nearest centimeter).  
 
We still conclude that the stalk is about 19 centimeters tall, but we’d now think this value could have up 
to a centimeter of inaccuracy to it.  

 
Even though the expressions 0.190 and 0.19 represent the exact same number mathematically, to a 
scientist, the expressions “0.190 meters” and “0.19 meters” tell us more than just a numerical value.  
They indicate the level of accuracy associated with the numerical value in a practical context. 
 
 

Practice 63.1: A scientist records in an experiment a temperature of  713.020 degrees Celsius. 
What was the accuracy of his measuring instrument?  
 

The botanist who measured the stalk length as 0.190 meters published this number in scientific 
notation.  
 
 1.90 × 10−1 meters  
 
Again, she included the decimal digit of zero to indicate the level of precision she conducted her 
measurement. (She measured zero thousandths of a meter.) Every digit she wrote down in scientific 
notation was deliberate and significant.  
 
 

Significant Figures: If scientific measurements are recorded in scientific notation, then all of the 
digits written to the left of the power of ten are considered “significant.” They were measured 
by an instrument that has a certain degree of accuracy. (So, if some of the digits written down 
are zero, that is deliberate—they were measured to be zero!)  
 
The number of significant figures in a recorded measurement is the number of digits written to 
the left of the power of ten. 

 
 
For example, the recorded measurement 1.90 × 10−1 meters has three significant figures.  
 
Another botanist measuring the same stalk with a different instrument writes its height as 
1.89701 × 10−1meters, giving a recorded result with six significant figures. She measured to the 
nearest millionth of a meter. 
 
A third botanist writing the height as 12 10−× meters is recording the measurement with just one 
significant figure. He measured to the to the nearest tenth of a meter. (His meter stick must have been 
divided into just ten equally spaced marks.)   
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Writing measurements in scientific notation avoids confusion.   
 
 

Example: Using estimation techniques, I determined the population of a certain town to be 
34,000 residents.  
 
Which of the five digits in the measurement are significant? (That is, which of the five digits did I 
actually measure?)  
 
(Non) Answer:  

 
I recorded the digit 3, so I was certainly measuring to the accuracy of ten-thousand residents. 
 
I recorded the digit 4, so I was actually doing better, measuring at least to the nearest thousand 
residents. 
 
Did I record that middle zero? Was I able to estimate to the nearest 100 residents? 
You can’t tell. 
 
Maybe I was able to measure to the nearest 10 residents and two of the zeros I recorded are 
“genuine.” 
 
Or maybe I counted every single resident and got the figure 34,000 on the nose? (All five digits 
are valid.)   
 
It is impossible for you to say what exactly I mean by the zeros in my recorded result.  
 
 

To obviate confusion, let me present my measurement in scientific notation instead.  
 
 

Example Continued: I intend to publish this measurement as  
 

3.400 × 104 
residents. 

 
Now you can see that I was measuring to the nearest ten residents. The town population might well be 
34,003 residents, or 33,998 residents, for instance. But we can be assured that the town population is 
34,000 with an accuracy range of 10 residents.   
 
 
For such clarity, scientists record their results in scientific notation.  
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MECHANICS PRACTICE 
 
Practice 63.2   
a) A geographer determines the population of a county to be 310,000 people. He says he counted to 
the nearest thousand people. Rewrite his count in scientific notation, displaying the appropriate 
number of significant figures.  
 
b) Later, he said he mis-spoke: actually measured to the nearest 100 people. Adjust your answer to 
part a) appropriately. 
 
 
Practice 63.3:  As part of a cleanliness study, a scientist measured the width of a dust particle to be 
0.000100 millimeters. The scientific journal in which he wants to publish his results wants all 
measurements to be given in scientific notation. 
 

a) How does his measurement appear when written in scientific notation? 
b) He later learns that the journal wants all measurements to be given in units of kilometers, not 

millimeters (and still be in scientific notation). Now how will his measurement appear? 
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64. Order of Magnitude  
 
If you earn a six-digit salary (lucky you!), you are earning an annual salary in the hundreds of thousands 
of dollars. Perhaps it is $240,000 dollars a year, or $598,764 dollars a year. (Salaries are usually given in 
units of dollars, not to the level of cents.)   
 
Someone earning a seven-digit salary is even luckier and has an annual income in the millions. 
 
 

Practice 64.1:  I am currently earning a six-digit salary. But if I earned just one more dollar per 
year, I’d be earning a seven-digit salary. What is my current salary?     
 
(By the way … the premise of this question is not true!)  

  
 
We often speak in terms of the “order of magnitude” of a number, giving a sense of the size of a number 
without specifying the number directly. There are two typical ways this is done in society. They aren’t 
quite the same mathematically. 
 
 
 
Order of Magnitude 1: If the number is a counting number, then just say the number of digits of the 
number.  
  
For example, most everyone earns a five-digit salary.  
 
 
 
Order of Magnitude 2: Write the number in scientific notation: 𝑎𝑎. 𝑎𝑎𝑎𝑎𝑑𝑑. . .× 10𝑚𝑚. Then 𝑚𝑚, the power of 
ten mentioned, is the order of the magnitude of the number. This gives a natural means to talk about 
the order of magnitude of decimal numbers too. 

 
For example, in this second setting   
 

7.12 × 103 has order of magnitude three. (It is a number in the thousands.) 
 
4.8 × 10−5 has order of magnitude −5. (It’s a number “talking about” one-hundred 
thousandths.) 
 
0.0074 has order of magnitude −3. (We’re talking about thousands, essentially.)  
 
6.9872 × 106 has order of magnitude 6. (It’s a number in the millions.) 
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Practice 64.2:   
a) How many digits does the number 7.12 × 103 have when written out as a counting number? 
 
What is its order of magnitude according to the first definition and what is its order of 
magnitude according to the second? 
 
 
b) How many digits does the number 6.9872 × 106 have when written out as a counting 
number? 
 

 
We see that these two ways of expressing an order of magnitude of a large number are slightly 
different.  
 
 

Order of Magnitude as Scales 
 
Many natural phenomena, such as earthquake vibrations and sound intensities, occur in a vast array of 
strengths.  

For example, the sound intensity of a NASA Saturn V rocket launch is about 
100,000,000,000,000,000,000 = 1020 times more intense than the sound of a pin drop.  

It would be very annoying to have a measurement scale for sound intensity that starts close to zero (for 
a pin drop) and goes to such huge multi-digit numbers (for rocket launches). For this reason, the Bel 
scale for sound intensity is based on order of magnitude rather than a direct intensity measure. (To be 
clear, it is the second definition of “order of magnitude” being used here.) 
 
The sound of a pin drop measures 1 Bel and the sound of the rocket launch measures 20 Bel.  
 

Aside: Actually, it has become standard to speak in terms tenths of Bels—decibels. A pin drop is 
10 dB and a rocket launch 200 dB. 
 

The Richter scale for earthquake intensity is also a scale based on the second definition of order of 
magnitude. An earthquake of measure 6 on the Richter scale (it’s 106 fundamental units of 
measurement) is one unit of magnitude up from one of measure 5 (which is 105 fundamental units of 
measurement). Consequently, the earthquake of magnitude 6 is ten times as strong as the one of 
magnitude 5.  
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MUSINGS 
 
Musing 64.3: Two earthquakes measure 4 and 7, respectively, on the Richter scale. By what factor is 
the second quake stronger than the first? 
 
Musing 64.4 The number 4.1 × 109 is a number in the billions. What is its order of magnitude 
according to the first definition? According to the second? 
 
Musing 64.5:  
a) Do the numbers 999,999 and 1,000,000 seem significantly different to you? 
b) What is the order of magnitude of each of these numbers according to the first definition? 
c) What is the order of magnitude of each of these numbers according to the second definition? 
 

Comment: We’re seeing that a concept of the “order of magnitude” of a number is just a 
quick and rough attempt to give an intuitive sense of the size of the number. There are always 
going to be examples that show our estimations are a tad questionable. But that’s not a real 
concern. We really are just going for rough-and-ready intuitive sense of the size of numbers.    

 
 
Musing 64.6  VERY OPTIONAL 
 
Scientists (in particular, astronomers) consistently working with very big numbers often represent all 
their numbers solely in terms of powers of ten. This means that they are willing to work with strange 
values for the powers. 
 
We’ll make sense of this when we discuss powers in proper detail in the next volume. But for now, 
let’s just play with our calculators, even if we are not sure we understand what our calculators mean 
in what they are showing.  
 
We know, for example, that   

106 = 1,000,000 
and   

107 = 10,000,000 
 
Now 3,300,00, for instance, is a value between one million and ten million. It is possible to imagine 
that there is a power of ten, between 6 and 7, that gives this value.  
 
Experimentation with a calculator shows that 106.519 is about this value. (This is weird, I know. But try 
entering 106.519 on a calculator.) 
 
In the same way, we see 3,100,000 seems to be about 106.491. 
 
Here’s a third convention for stating what the “order of magnitude” of a number is.  
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Order of Magnitude 3:  Write the given number solely as a power of ten, most likely with a 
decimal as the power: 10𝑟𝑟. Then round 𝑟𝑟 up or down to the nearest integer. Call that rounded 
value the order of magnitude of the number. 

 
For example,   
 

3,300,000 ≈ 106.519 and 6.519 rounds to 7. So 3,300,000 has order of magnitude 7 in this third 
definition. 
 
3,100,000 ≈ 106.491 and 6.491rounds to 6. So 3,100,000 has order of magnitude 6 in this third 
definition. 
 

Confusing! 
 

a) What do you think? Do 3.1million and 3.3 million seem like they should have different orders 
of magnitude to you?   
 

b) What is the order of magnitude of the number 254 according to this third definition? 
 

c) What is the order of magnitude of the number 0.0033 according to this third definition? 
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Solutions 
 
53.1  10 × 1

1,000
= 10

1000
= 10×1

10×100
= 1

100
 and 10 × 1

10,000
= 10

10,000
= 10×1

10×1000
= 1

1000
 . 

53. 2   1
10

× 1
10

× 1
10

= 1
10×10×10

= 1
1,000

 and 1
10

× 1
10

× 1
10

× 1
10

= 1
10×10×10×10

= 1
10,000

 

53.3  Ten 

53.4  We need a name that represents two-ness. A “bimal” point? A “dimal” point? 
 
53.5 In Europe, for instance, it is popular to use a comma to as a decimal “point.” 
 
53.6   8

100,000
= 1

12,500
 

53.7 a) 0.009 = 9
1,000

     b) 0.26 = 26
100

    c) 0.3007 = 3,007
10,000

 

53.8  Both are correct. One just needs to conduct some explosions or unexplosions to convert one to the 
other.  
 
53.9 She should do some explosions.  

2.7|11|11|1 = 2.8|1|11|1 = 2.8|2|1|1 
 

53.10 Yes. Eleven times two dots in a box makes 22 dots in the box. And eleven times three dots in a 
box makes 33 dots in the box. And so on. 
 
With explosions we get 259.16. 
 

22|33.55|66 = 2|2|33.55|66 = 2|5|3.55|66 = 2|5|8.5|66 = 2|5|8.11|6 = 2|5|9.1|6 

53.11  

 

After explosions, this is  
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53.12  260.4299 

53.13 a) 23
100

   b) 409
10000

 

53.14   

 

53.15 a) 31.2      b) Can you? 

54. 1  
1 0.25
4
=  
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54.2 
1 0.2
5
=  

 

 

 

54.3 The decimal 0.1  is 
1

10
.  So, of course, 

1 1 10
10

= ÷ , has to give 0.1 . (And it does!)  

 

54.4 1
40

= 0.025 

 

54.5    1
9

= 0.1111111 … 

54.6   2
15

= 0.1333333 … 
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54.7  1
6

= 0.16666666 … 

54.8  1
3
 and 1

6
 and 1

7
 and 1

9
 and 1

11
 and 1

12
 have infinitely long decimal expansions.  

54.9  a) Double this, which is 0.66666 … 

b) It is! Both are 1.333333 …. 

c) No. 3
3
, for example, is just 1 ! 

54.10  
1
3

= 0.33333 … 

1
6

= 0.166666 … 

Add these and you get 0.49999999 ….  
This looks different than 0.5. 
 
54.11 a) We get 0.5 and 0.05.    b) We get 0.2 and 0.02.     c) We get 0.33333 … and 0.033333 ….. 
 
It looks like that multiplying a decimal by 1

10
 has the effect of inserting a zero right after the decimal 

point.  
 
54.12 Do this.     

54.13  4
7

= 0. 571428  572418  572418 …      

54.14  1
11

= 0.09090909 … 
54.15  Can you verify everything you are asked to verify? 
 
54.16 This process wants to “settle to” this picture of the number 1. 
 

 
 

55.1 3
5

= 6
10

= 0.6,  21
250

= 84
1000

= 0.084, 3
125

= 8
1000

= 0.008 
 
55.2   1

2×2×2×2×2×5×5×5
= 5×5

2×2×2×2×2×5×5×5×5×5
= 25

10×10×10×10×10
= 0.00025 
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55.3 Yes. A decimal of the form 0.𝑎𝑎 is a certain number of tenths, a decimal of the form 0.𝑎𝑎𝑎𝑎 is a certain 
number of hundredths, a decimal of the form 0.𝑎𝑎𝑎𝑎𝑎𝑎 is a certain number of thousandths, and so on. 
 
55.4 I personally think so. “Seven tenths” and “seven tenths + no hundredths + no thousandths + no ten-
thousandths + ….” feel the same to me.  
 

56.1   5
100

+ 6
1000

= 50
1000

+ 6
1000

= 56
1000

 

56.2 5
100

− 6
1000

= 50
1000

+ −6
1000

= 44
1000

 
 
56.3 a) 851     
b) 0.023 = 23

1000
 and 0.37 = 37

100
      

c) 0.023 × 0.37 = 23
1000

× 37
100

= 851
100,000

= 0.00851 

d) 2.3 × 3.7 = 23
10

× 37
10

= 851
100

= 8.51 and 230 × 0.037 = 23 × 10 × 37
100

= 851
10

= 8.51 

  

56.4  0.7 × 0.004 = 7
10

× 4
1000

= 28
10,000

= 0.0028 

56.5  a) 70     b) 0.07     c) 0.7 

56.6 13.276 + 5.94 = 19.216 and 13.276 − 5.94 = 7.336. 

56.7 a) Because of the alignment of the decimal places, this work is essentially the same. 

 

b) We don’t have matching alignments of the decimal places this time. 
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56.8  
a) 1

5
× 0.02 = 1

5
× 2

100
= 2

500
= 1

125
 or, as a decimal, 1

5
× 0.02 = 2

500
= 4

1000
= 0.004 

b) 1/5
0.02

=
100×(15)

100×0.02
= 20

2
= 10 

 
56.9 Thinking of “abc” as a three-digit number. Then 0.𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑏𝑏𝑎𝑎

1,000
. 

a) 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 10 = 1
10

× 0.𝑎𝑎𝑎𝑎𝑎𝑎 = 1
10

× 𝑎𝑎𝑏𝑏𝑎𝑎
1,000

= 𝑎𝑎𝑏𝑏𝑎𝑎
10,000

= 0.0𝑎𝑎𝑎𝑎𝑎𝑎 

b) 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 100 = 1
100

× 0.𝑎𝑎𝑎𝑎𝑎𝑎 = 1
10

× 𝑎𝑎𝑏𝑏𝑎𝑎
1,000

= 𝑎𝑎𝑏𝑏𝑎𝑎
100,000

= 0.00𝑎𝑎𝑎𝑎𝑎𝑎 

c) 0.𝑎𝑎𝑎𝑎𝑎𝑎 ÷ 0.1 = 0.𝑎𝑎𝑏𝑏𝑎𝑎
0.1

=
𝑎𝑎𝑎𝑎𝑎𝑎
1000
1
10

=
10× 𝑎𝑎𝑎𝑎𝑎𝑎

1000
10× 1

10
=

𝑎𝑎𝑎𝑎𝑎𝑎
100
1

= 𝑎𝑎𝑏𝑏𝑎𝑎
100

= 𝑎𝑎. 𝑎𝑎𝑎𝑎 

 
d)  𝑎𝑎𝑎𝑎. 𝑎𝑎       e) 𝑎𝑎𝑎𝑎. 𝑎𝑎         f) 0.00𝑎𝑎𝑎𝑎𝑎𝑎 
 
56.10 Notice that 483.014 is a number in the hundreds.  
 
a) We should get a number in the thousands: 4,830.14     
b) We should get a number in the ten thousands: 48,301.4       
c) We should get a number in the millions:  4,830,140       
d) We should get a number in the tens: 48.3014    
e) We should get a number in the ones: 4.83014 
f) We should get a number in the hundredths: 0.0483014 
 
56.11 1

11.99
< 1

11.98
< 1

11.97
< ⋯ < 1

11.01
, for example. 

 
56.12 a) 1.29   b) 5.05   c) 0.0812 
 
56.13  Do use technology. (That is what any sane person would do!) 
 
56.14  a) This is roughly 33 − 8, so something under 25? Exact answer:  24.342      
This is roughly 2− 0.8, so about 1.2?  Exact answer: 1.253 

 
56.15 It’s 1.45 − 1 + 0.04 = 0.49 
 
56.16  a) 41%  b) 0.58   c) 0.1%    d) 1

3
   e) 12

10,000
 

 
56.17 a) 2.25  b) 1.96   c) 2.1025    d) 2.0164    e) 1.9881, too small.  f) 1.414 
 
57.1 In the second box after the decimal place we have a remainder of 0 dots. Unexploding no dots 
gives zero dots in the next box. There are zero groups of 4 there with a remainder of 0, again. We are in 
a pattern of repeating a remainder of zero. 
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57.2 0.5111111 … 
 
57.3 As there are only seven possible remainders when you conduct the division process, one must cycle 
through at most seven remainders. Thus, one cannot have a cycle in a decimal expansion for sevenths 
longer than seven.  
A cycle of length seven is also not possible. In this case one must be cycling through all seven 
remainders, including 0. But as soon as you hit 0 as a remainder, you are in a pattern of repeating zeros 
and so have cycles of length one, not seven. 
 
57.4 a) Do it.   b) Do it.   c) 19

90
    d) 281850

99,900
 

58.1 People do consider each integer to be a finite decimal. 

58.2 Jut write an infinitely long decimal that fails to have a repeating pattern. 

58.3 0.3 4 33 4 333 4 3333 4 33333 4 333333 4 33 … , for instance. 

58.4 Add 0.3 2 33 2 333 2 3333 2 33333 2 333333 2 33 … to the previous example.  
They sum to 0.66666.. which is the fraction 2

3
. 

 
59.1 12, 12, and 17 centimeters. And then again to 5, 5, and 7 centimeters. 
 
60.1 a) It does. We’d have 𝑎𝑎0 = 1.    b) 𝑎𝑎0 does not make sense with this definition. 
 
60.2 a) 10100    b) 10𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  

60.3 a) 3|2|0|0|7|0.0|5 = 320,070.05  
b) 17|82|90|76.23|48 = 26,178.78 

60.4 a) Trillion = 1012, a thousand billion; Quadrillion = 1015, a thousand trillion. 
 
b) Former billion = 1012, Former trillion = 1018, Former quadrillion = 1024. 
 
c) It does in the former system. The prefix tells you how many millions are multiplied together to get the 
number. 
 
d) A thousand million. (That’s now called a billion.)  
 
60.5 One billion bits (109). 

60.6  One billion seconds is about 31.7 years. 
 
60.7 a) 4      b) 1

4
    c) 81       d) 1     e) 1      f) 0 
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60.8 a) 10−5   b) 43  c) 2−3  d) 𝑎𝑎 = 2
5
        

60.9 a) Seven 10s multiplied by eight 10s gives 15 tens all multiplied together. (Any 1s involved in the 
product have no effect.)  
b) 1014    c) 103     d) 10−7 
 
61.1 a) 520.04   b) 5,200.4    c) 52,004,000  d) 5.2004   e) 0.52004    f) 0.0052004 
 

61.2   788.4 lakh 

61.3 Divide by 60 to obtain the number of minutes. Divide by 60 again to obtain the number of hours. 
Divide by 24 to obtain the number of days. Divide by 365.25 (or just 365) to obtain the number of years. 
 
61.4 a) Eight million   b) Eight thousand    c) 2

100
 

61.5  3.84400 × 105  km 

61.6  a) 6.539 × 103 ;   7.5 × 1010   ;  4 × 10−4   ; c 

b) 727  ;   0.0727   ;   72,700    ; 0.0000727 

61.7   a) 6.6 × 106    b) 2.64 × 107    c) 6.6 × 106    d) 1.1 × 107   e) 1.1 × 1022         

62.1  24 

62.2  These ones 
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62.3 Read on. 
 
62.4   26,501 works. 

62.5  50,049 

62.6 a) 5,750    b) 5,800 
 
62.7 −35,500 

62.8  384,400 km 

62.9 a) 8,000,000    b) 8,384,000   c) 8,383,838.38    d) 8,383,838.384 
 
63.1 To a thousandth of a degree. 
 
63.2 a) 3.10 × 105     b) 3.100 × 105      

63.3 a) 1.00 × 10−4 mm   b) 1.00 × 10−9 km    

64.1  $999,999 

64.2 a) Four digits. It has order of magnitude 4 according to the first definition, 3 according to the 
second definition. 
b) Seven 
 
64.3 A thousand times stronger. 

64.4   10 and 9, respectively. 

64.5  b) 6 and 7, respectively.  c) 5 and 6, respectively.    
 
65.5 b) 254 ≈ 102.4 has order of magnitude 2. 
c) 0.0033 ≈ 10−2.48 has order of magnitude −2. 
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