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Here’s a puzzle.  Start with a pile of 6 objects: pebbles, beads, coins, whatever you like.  Then split your 
pile into two smaller piles of sizes 𝑎𝑎 and 𝑏𝑏, say.  Off to the side, write down a 2x2 matrix with each row 
(1
𝑎𝑎

, 1
𝑏𝑏

).   

 
 
Repeat this process of splitting the piles and writing down the associated matrices until you only have 6 
single pebble piles remaining (which, of course, cannot be split any further.)   Now, take all of the 
matrices, in any order (it does not have to be the order in which you wrote them down), and multiply 
them all together.  I’m willing to bet that no matter which order you multiplied the matrices, the sum of 
all of the entries of the product matrix—its “grand sum”—is sure to equal 12! 

 
Try this!  Go through this same pile splitting process, but make different splitting choices along the way.  
Does the grand sum still equal 12?  What about if you change the order in which you multiply the 
matrices?  Is this phenomenon unique to 6 pebbles? 
 
This is kind of cool… but let’s take this even further!  Start with a pile of 𝑛𝑛 objects, and split the pile into 
𝑘𝑘 smaller piles of sizes 𝑎𝑎, 𝑏𝑏,…,𝑐𝑐, say,  where 𝑘𝑘  is any number ≤ 𝑛𝑛. Let 𝑝𝑝 = 𝑎𝑎•𝑏𝑏•…•𝑐𝑐  be the product of 
the pile sizes. This time, write down an 𝑛𝑛x𝑛𝑛 matrix, with the entries in each row (𝑎𝑎

𝑝𝑝
, 𝑏𝑏
𝑝𝑝

,…,𝑐𝑐
𝑝𝑝

) with zeros 



filling any excess entries (which will be the case if  𝑘𝑘 < 𝑛𝑛).  But, instead of keeping all of the rows the 
same, “shift” each entry one space to the right from one row to another with wrap around. 

 
 
Again, repeat this process (changing up the value of 𝑘𝑘 as you go), until you only have 𝑛𝑛 single piles left.  
Multiply all of the matrices, in any order, and the grand sum of the resulting matrix is sure to equal 𝑛𝑛2. 
 
Here’s an example with 𝑛𝑛 = 6: 

 
What is going on here? 
 
 

Exploring why this works 
(Make sure you’ve had some fun trying to explain this on your own, before I give it all away!) 
 
Part 1: Matrices 
Let’s start by looking at that first puzzle, with the 2x2 matrices.  More specifically, let’s look at the bit 
where we take the product of all of the special matrices we create.  If you did try multiplying the string 
of matrices which you got in several different orders, you probably noticed that the entries of the final 
product matrix would change, but the grand sum was always equal to 12.  So, something in the specific 
structure of the matrices must accommodate a sort of “commutativity.”  Ok, I’m not entirely sure what 
that means yet, so let’s play with it.  Let’s multiply two matrices, with random entries, and take things 
from there.  

 
Ok, the grand sum of 𝐴𝐴𝐴𝐴 is 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏ℎ + 𝑐𝑐𝑎𝑎 + 𝑑𝑑𝑏𝑏 + 𝑐𝑐𝑎𝑎 + 𝑑𝑑ℎ. Is this related in some way to 
(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑)(𝑎𝑎 + 𝑎𝑎 + 𝑏𝑏 + ℎ) , the product of the grand sums of the original matrices?  



 
Well, in our puzzle, the rows of our matrices are identical.  So, let’s presume 𝑎𝑎 + 𝑏𝑏 = 𝑐𝑐 + 𝑑𝑑 and 𝑎𝑎 + 𝑎𝑎 =
𝑏𝑏 + ℎ.  Now the rather nasty 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏ℎ + 𝑐𝑐𝑎𝑎 + 𝑑𝑑𝑏𝑏 + 𝑐𝑐𝑎𝑎 + 𝑑𝑑ℎ  simplifies to 𝑎𝑎(𝑎𝑎 + 𝑎𝑎) +
𝑏𝑏(𝑏𝑏 + ℎ) + 𝑐𝑐(𝑎𝑎 + 𝑎𝑎) + 𝑑𝑑(𝑏𝑏 + ℎ) = 𝑎𝑎(𝑎𝑎 + 𝑎𝑎) + 𝑏𝑏(𝑎𝑎 + 𝑎𝑎) + 𝑐𝑐(𝑎𝑎 + 𝑎𝑎) + 𝑑𝑑(𝑎𝑎 + 𝑎𝑎) = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑎𝑎) +
(𝑐𝑐 + 𝑑𝑑)(𝑎𝑎 + 𝑎𝑎) = 2(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑎𝑎)!  (Not a factorial, just an expression of excitement.)  This is half the 
product of the grand sums of the two matrices. Or, it can be viewed as twice the product of the sum of 
the entries in either row of 𝐴𝐴 and sum of entries of either row of 𝐴𝐴. Either way, it’s the individual row 
sums at play here.  
 
We have: 

 
If 𝐴𝐴 and 𝐴𝐴 are two-by-two matrices and the entries in each row of 𝐴𝐴 sum to 𝛼𝛼 and the entries in 
each row of 𝐴𝐴 sum to 𝛽𝛽 , then the entries in each row of 𝐴𝐴𝐴𝐴 sum to 𝛼𝛼𝛽𝛽. 

  
Mathematicians call a square matrix whose entries in each row and each column sum to the same value 
semi-magic. Let’s call a square matrix whose entries in just each row sum to a common value demi-semi-
magic and let’s call that common sum its row sum. 
 
Now, before we move on to explain the pile splitting bit of all of this, let’s first ensure that the above 
rule is true for arbitrarily sized demi-semi-magic matrices, and not just two-by-two ones.   Actually, 
there’s a nice slick way to do this:  Let 𝟏𝟏 be the 𝑛𝑛x𝑛𝑛 matrix with all entries equal to 1.  A matrix, 𝐴𝐴, is 
demi-semi-magic if, and only if, 𝐴𝐴𝟏𝟏 = 𝛼𝛼𝟏𝟏 for some value of 𝛼𝛼 (which is the row sum of 𝐴𝐴).  So, if 𝐴𝐴 and 𝐴𝐴 
are both demi-semi-magic, 𝐴𝐴𝐴𝐴𝟏𝟏 = 𝐴𝐴(𝛽𝛽𝟏𝟏) = 𝛽𝛽(𝐴𝐴𝟏𝟏) = 𝛽𝛽𝛼𝛼𝟏𝟏 = 𝛼𝛼𝛽𝛽𝟏𝟏, showing that 𝐴𝐴𝐴𝐴 is demi-semi-
magic with row sum 𝛼𝛼𝛽𝛽. So too is 𝐴𝐴𝐴𝐴, with the same row sum 𝛼𝛼𝛽𝛽, following the same work. The order in 
which one multiplies demi-semi-matrices does not affect the row sum of the demi-semi-matrix that 
results. Neat! 
 

If 𝐴𝐴, 𝐴𝐴 , .., 𝐶𝐶 are demi-semi magic  𝑛𝑛 x 𝑛𝑛 matrices with row sums 𝛼𝛼,𝛽𝛽, …,𝛾𝛾, then their product (in 
any order) is again demi-semi-magic, with row sum 𝛼𝛼𝛽𝛽⋯𝛾𝛾. 

 
Part 2: Pile Splitting 
Now we just need to explain why, no matter which splitting choices we made along the way, the 
product of the row sums of the matrices was always the same.  In each pile splitting puzzle, if we start 
with a pile of n items and split it into piles of a, b, …, c items (in our 2x2 matrices puzzle, only piles a and 
b), we write a demi-semi-matrix with row sum 𝑎𝑎

𝑎𝑎𝑏𝑏⋯𝑐𝑐
+ 𝑏𝑏

𝑎𝑎𝑏𝑏⋯𝑐𝑐
+⋯ 𝑐𝑐

𝑎𝑎𝑏𝑏⋯𝑐𝑐
= 𝑛𝑛

𝑎𝑎𝑏𝑏⋯𝑐𝑐
. When we later split the 

pile of a items into piles of d, e, …, f items, we write a matrix with row sum 𝑎𝑎
𝑒𝑒𝑒𝑒⋯𝑓𝑓

. And so on.  The final 

step produces a demi-semi-magic matrix with row sum the product of all these row sums.  
 

𝑛𝑛
𝑎𝑎𝑏𝑏⋯𝑐𝑐

×⋯×
𝑎𝑎

𝑑𝑑𝑎𝑎⋯𝑎𝑎
× ⋯×

𝑏𝑏
𝑏𝑏ℎ… 𝑖𝑖

× ⋯ 

    
As we can see, every pile that gets split will end up in the numerator of a fraction, and every pile that is 
the result of a split will end up in the denominator of a fraction.  That is, every pile, except for our initial 
𝑛𝑛 and our final 𝑛𝑛 1s, will appear both in the numerator and denominator of a fraction, and will cancel.  
We see then that this product equals 𝑛𝑛

1∙1∙⋯∙1
= 𝑛𝑛. 

 



For the first puzzle we start with 𝑛𝑛 = 6 and write demi-semi-magic 2x2 matrices. The resulting matrix 
after play of the game has two rows each of row sum 6, and so grand sum of 12. 
 
For the second puzzle we start with 𝑛𝑛 objects and write demi-semi magic 𝑛𝑛 x 𝑛𝑛 matrices. The final matrix 
has 𝑛𝑛 rows each of row sum 𝑛𝑛 and hence grand sum of 𝑛𝑛2 .   
 
Reference:  
There’s actually a more general way to express this, which the brilliant James Tanton came up with in his 
pile splitting puzzles (you can find them here: https://www.jamestanton.com/wp-
content/uploads/2010/12/Pile-Splitting1.pdf ), which gave me the inspiration to play with all of this.  I 
have no idea how he thought of it, but here it is:  Let 𝐴𝐴(𝑛𝑛) equal the 𝑛𝑛th term of a sequence (such as the 
counting numbers, or square numbers, or triangular numbers, etc.)   With a split of 𝑛𝑛 into 𝑎𝑎 and 𝑏𝑏  
associate the fraction 𝐴𝐴(𝑛𝑛)

𝐴𝐴(𝑎𝑎)𝐴𝐴(𝑏𝑏).  When we multiply all of these fraction at the end, all of the “middle 

stuff” will cancel, leaving 𝐴𝐴(𝑛𝑛)
𝐴𝐴(1)𝐴𝐴(1)…𝐴𝐴(1) = 𝐴𝐴(𝑛𝑛)

𝐴𝐴(1)𝑛𝑛 .  I was then able to expand this a smidgen, to show that 

we can associate the fraction 𝐴𝐴(𝑛𝑛)
𝐴𝐴(𝑎𝑎)𝐴𝐴(𝑏𝑏)…𝐴𝐴(𝑐𝑐) with a split of 𝑛𝑛 into 𝑘𝑘 piles, 𝑎𝑎, 𝑏𝑏, … , 𝑐𝑐 (where 𝑘𝑘 need not be 

the same value every time).  As before, every pile, except for 𝐴𝐴(𝑛𝑛) and the 𝑛𝑛 𝐴𝐴(1)s, will end up in the 
denominator of one fraction, and the numerator of another, so when we take the product of all of 
these, almost everything will cancel, leaving us, again, with 𝐴𝐴(𝑛𝑛)

𝐴𝐴(1)𝑛𝑛.   And as you can see from above, our 

two puzzles use 𝐴𝐴(𝑛𝑛) = 𝑛𝑛. 
 
One can also conduct an addictive version of pile-splitting by associating with each split 𝑘𝑘 → 𝑎𝑎 + 𝑏𝑏 +
⋯+ 𝑐𝑐 the term 𝐴𝐴(𝑘𝑘) − 𝐴𝐴(𝑎𝑎) − 𝐴𝐴(𝑏𝑏) −⋯− 𝐴𝐴(𝑐𝑐). The sum of all such terms after pile-splitting is sure to 
be 𝐴𝐴(𝑛𝑛) − 𝑛𝑛𝐴𝐴(1). 
 
 
Some final questions: 
What other pile splitting puzzles can you come up with using matrices?  Is there a way to do something 
with logarithms?  Trigonometric function?  Modular arithmetic?  And are there any other interesting 
puzzles which one could do with demi-semi-magic matrices?  Could one use pile splitting to express 
every demi-semi-magic matrix as a product of other demi-semi-magic matrices?  What if 𝐴𝐴(𝑛𝑛) were, 
itself, a matrix, how could that work in the context of matrix pile splitting? 
 
There’s so much left to explore here, and who knows what one might find! 
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https://www.jamestanton.com/wp-content/uploads/2010/12/Pile-Splitting1.pdf

